BCS-012

BACHELOR OF COMPUTER APPLICATIONS (Revised)

Term-End Examination

December, 2013

BCS-012 : BASIC MATHEMATICS

Time : 3 hours

S

0841

Maximum Marks: 100

Note: Question no. **1** is **compulsory**. Attempt **any three** questions from the remaining questions.

1. (a) Show that
$$\begin{vmatrix} b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix} = 2\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$$
 5

(b) If A =
$$\begin{bmatrix} 2 & -1 & 3 \end{bmatrix}$$
 and B = $\begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}$ check 5

whether AB = BA.

(c) Use the principle of mathematical induction 5 to show that $1+3+5+\dots+(2n-1)=n^2$ for each $n \in \mathbb{N}$.

(d) If
$$\alpha$$
 and β are roots of $x^2 - 3ax + a^2 = 0$ and 5
 $\alpha^2 + \beta^2 = \frac{7}{9}$, find the value of *a*.

BCS-012

(e) If
$$y = ax + \frac{b}{x}$$
, show that $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} - y = 0$ 5

(f) Evaluate the integral
$$\int e^x (e^x + 7)^5 dx$$
. 5

(g) If
$$\vec{a}=5\hat{i}-\hat{j}-3\hat{k}$$
 and $\vec{b}=\hat{i}-3\hat{j}-5\hat{k}$, show 5
that $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are perpendicular to each other.

(h) Find the angle between the lines 5
$$\frac{x-5}{2} = \frac{y-5}{1} = \frac{z+1}{-1}$$
 and $\frac{x}{3} = \frac{y-1}{2} = \frac{z+5}{3}$

2. (a) If
$$A = \begin{bmatrix} -1 & 2 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
, show that $A^2 = A^{-1}$. 5

(b) Show that
$$A = \begin{bmatrix} 3 & 4 & -5 \\ 1 & 1 & 0 \\ 1 & 1 & 5 \end{bmatrix}$$
 is row equivalent 5

to I_{3} , where I_{3} is identity matrix of order 3.

(c) If
$$A = \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix}$$
, show that 10

 $A^2 - 4A + 7I_2 = 0_{2x2}$. Use this result to find A^5 . Where 0_{2x2} is null matrix of order 2x2.

3. (a) Solve the equation $6x^3 - 11x^2 - 3x + 2 = 0$, 5 given that the roots are in H.P.

BCS-012

(b) If
$$x+iy=\sqrt{\frac{a+ib}{c+id}}$$
, show that 5

$$(x^2 + y^2)^2 = \frac{a^2 + b^2}{c^2 + d^2} \cdot$$

(c) Solve the inequality
$$\left|\frac{3x-1}{2}\right| \le 5$$
. 5

(d) If α and β be the roots of the equation 5 $3x^2 - 4x + 1 = 0$, find the equation whose roots are α^2/β and β^2/α .

4. (a) Determine the intervals in which the 5
function
$$f(x) = \frac{1 + x + x^2}{1 - x + x^2}$$
, $x \in \mathbb{R}$ is increasing or decreasing.

(b) Show that
$$f(x) = x^2 ln(\frac{1}{x})$$
, $x > 0$ has a local 5

maximum at $x = \frac{1}{\sqrt{e}}$.

(c) Evaluate
$$\int (x+1)e^x (xe^x+5)^4 dx$$
. 5

(d) Find the area bounded by
$$y = \sqrt{x}$$
 and $y = x$. 5

5. (a) Find the vector and Cartesian equation of 5 the line through the points
$$(3, 0, -1)$$
 and $(5, 2, 3)$.

(b) Show that
$$\begin{bmatrix} \vec{a} \times \vec{b} & \vec{b} \times \vec{c} & \vec{c} \times \vec{a} \end{bmatrix} = \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}^2$$
 5

P.T.O.

(c) Two tailors A and B, earn ₹ 150 and ₹ 200 per day respectively. A can stich 6 shirts and 4 pants while B can stich 10 shirts and 4 pants per day. How many days should each work to stich (at least) 60 shirts and 32 pants at least labour cost? Also calculate the least cost.