# BACHELOR OF COMPUTER APPLICATIONS (Revised) 

Term-End Examination

December, 2013

## BCS-012 : BASIC MATHEMATICS

Time : 3 hours
Maximum Marks : 100
Note: Question no. 1 is compulsory. Attempt any three questions from the remaining questions.

1. (a) Show that $\left|\begin{array}{lll}b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a\end{array}\right|=2\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$
(b) If $\mathrm{A}=\left[\begin{array}{lll}2 & -1 & 3\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{c}1 \\ 3 \\ -1\end{array}\right]$ check 5 whether $A B=B A$.
(c) Use the principle of mathematical induction 5 to show that $1+3+5+\cdots-\cdots+(2 n-1)=n^{2}$ for each $n \in \mathbf{N}$.
(d) If $\alpha$ and $\beta$ are roots of $x^{2}-3 a x+a^{2}=0$ and 5 $\alpha^{2}+\beta^{2}=\frac{7}{9}$, find the value of $a$.
(e) If $y=a x+\frac{b}{x}$, show that $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=0$
(f) Evaluate the integral $\int e^{x}\left(e^{x}+7\right)^{5} d x$.
(g) If $\vec{a}=5 \hat{i}-\hat{j}-3 \hat{k}$ and $\vec{b}=\hat{i}-3 \hat{j}-5 \hat{k}$, show that $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are perpendicular to each other.
(h) Find the angle between the lines

$$
\frac{x-5}{2}=\frac{y-5}{1}=\frac{z+1}{-1} \text { and } \frac{x}{3}=\frac{y-1}{2}=\frac{z+5}{3}
$$

2. (a) If $A=\left[\begin{array}{ccc}-1 & 2 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & 0\end{array}\right]$, show that $A^{2}=A^{-1}$.
(b) Show that $A=\left[\begin{array}{ccc}3 & 4 & -5 \\ 1 & 1 & 0 \\ 1 & 1 & 5\end{array}\right]$ is row equivalent 5 to $I_{3}$, where $I_{3}$ is identity matrix of order 3 .
(c) If $A=\left[\begin{array}{cc}2 & 3 \\ -1 & 2\end{array}\right]$, show that
$A^{2}-4 A+7 I_{2}=0_{2 \times 2}$. Use this result to find $A^{5}$. Where $0_{2 \times 2}$ is null matrix of order $2 \times 2$.
3. (a) Solve the equation $6 x^{3}-11 x^{2}-3 x+2=0$, given that the roots are in H.P.
(b) If $x+i y=\sqrt{\frac{a+i b}{c+i d}}$, show that 5
$\left(x^{2}+y^{2}\right)^{2}=\frac{a^{2}+b^{2}}{c^{2}+d^{2}}$.
(c) Solve the inequality $\left|\frac{3 x-1}{2}\right| \leq 5$.
(d) If $\alpha$ and $\beta$ be the roots of the equation $3 x^{2}-4 x+1=0$, find the equation whose roots are $\alpha^{2} / \beta$ and $\beta^{2} / \alpha$.
4. (a) Determine the intervals in which the
function $f(x)=\frac{1+x+x^{2}}{1-x+x^{2}}, \quad x \in \mathbf{R}$ is increasing or decreasing.
(b) Show that $f(x)=x^{2} \ln \left(\frac{1}{x}\right), x>0$ has a local maximum at $x=\frac{1}{\sqrt{e}}$.
(c) Evaluate $\int(x+1) e^{x}\left(x e^{x}+5\right)^{4} d x$.
(d) Find the area bounded by $y=\sqrt{x}$ and $y=x$.
5. (a) Find the vector and Cartesian equation of 5 the line through the points $(3,0,-1)$ and $(5,2,3)$.
(b) Show that $\left[\begin{array}{lll}\vec{a} \times \vec{b} & \vec{b} \times \vec{c} & \vec{c} \times \vec{a}\end{array}\right]=\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]^{2}$
(c) Two tailors A and B, earn ₹ 150 and ₹ 200 per day respectively. A can stich 6 shirts and 4 pants while B can stich 10 shirts and 4 pants per day. How many days should each work to stich (at least) 60 shirts and 32 pants at least labour cost ? Also calculate the least cost.
