**AST-01** 

## ASSIGNMENT BOOKLET Bachelor's Degree Programme (B.Sc./B.A./B.Com.)

## STATISTICAL TECHNIQUES

# Valid from 1<sup>st</sup> January, 2021 to 31<sup>st</sup> December, 2021

- It is compulsory to submit the Assignment before filling in the Term-End Examination Form.
- It is mandatory to register for a course before appearing in the Term-End Examination of the course. Otherwise, your result will not be declared.

# For B.Sc. Students Only

- You can take electives (56 or 64 credits) from a minimum of TWO and a maximum of FOUR science disciplines, viz. Physics, Chemistry, Life Sciences and Mathematics.
- You can opt for elective courses worth a MINIMUM OF 8 CREDITS and a MAXIMUM OF 48 CREDITS from any of these four disciplines.
- At least 25% of the total credits that you register for in the elective courses from Life Sciences, Chemistry and Physics disciplines must be from the laboratory courses. For example, if you opt for a total of 24 credits of electives in these 3 disciplines, then at least 6 credits out of those 24 credits should be from lab courses.



School of Sciences Indira Gandhi National Open University Maidan Garhi, New Delhi-110068

(2021)

Dear Student,

Please read the section on assignments in the Programme Guide for Elective Courses that we sent you after your enrolment. A weightage of 30 per cent, as you are aware, has been earmarked for continuous evaluation, which would consist of one tutor-marked assignment for this course. The assignment is in this booklet.

#### **Instructions for Formatting Your Assignments**

Before attempting the assignment please read the following instructions carefully.

1) On top of the first page of your answer sheet, please write the details exactly in the following format:

|                | ROLL NO.: .   |  |
|----------------|---------------|--|
|                | NAME: .       |  |
|                | ADDRESS: .    |  |
|                |               |  |
|                |               |  |
| COURSE CODE:   |               |  |
| COURSE TITLE:  |               |  |
| ASSIGNMENT NO. | :             |  |
| STUDY CENTRE:  | <b>DATE</b> : |  |

# PLEASE FOLLOW THE ABOVE FORMAT STRICTLY TO FACILITATE EVALUATION AND TO AVOID DELAY.

- 2) Use only foolscap size writing paper (but not of very thin variety) for writing your answers.
- 3) Leave 4 cm margin on the left, top and bottom of your answer sheet.
- 4) Your answers should be precise.
- 5) While solving problems, clearly indicate which part of which question is being solved.
- 6) This assignment is to be submitted to the Study Centre as per the schedule made by the study centre. Answer sheets received after the due date shall not be accepted.

#### We strongly suggest that you retain a copy of your answer sheets.

- 7) This assignment is valid only upto December, 2021. If you have failed in this assignment or fail to submit it by December, 2021, then you need to get the assignment for the year 2022 and submit it as per the instructions given in the programme guide.
- 8) You cannot fill the Exam Form for this course till you have submitted this assignment. So solve it and submit it to your study centre at the earliest.

We wish you good luck.

## Assignment

#### Course Code: AST-01 Assignment Code: AST-01/TMA/2021 Maximum Marks: 100

1. a) Following is the distribution of marks (out of 25) obtained by 10 students in Physics and Mathematics.

| No.   | Physics | Mathematics        | $\mathbf{X}_{i}^{2}$ | $\mathbf{Y}^2$ | X <sub>i</sub> Y <sub>i</sub> |
|-------|---------|--------------------|----------------------|----------------|-------------------------------|
|       | $(X_i)$ | $(\mathbf{Y}_{i})$ | 11                   | -1             | 1 1                           |
| 1     | 18      | 21                 | 324                  | 441            | 378                           |
| 2     | 20      | 23                 | 400                  | 529            | 460                           |
| 3     | 11      | 14                 | 121                  | 196            | 154                           |
| 4     | 20      | 23                 | 400                  | 529            | 460                           |
| 5     | 14      | 17                 | 196                  | 289            | 238                           |
| 6     | 15      | 18                 | 225                  | 324            | 270                           |
| 7     | 13      | 16                 | 169                  | 256            | 208                           |
| 8     | 16      | 19                 | 256                  | 361            | 304                           |
| 9     | 17      | 20                 | 289                  | 400            | 480                           |
| 10    | 20      | 23                 | 400                  | 529            | 460                           |
| Total | 164     | 194                | 2780                 | 3854           | 3412                          |

Draw a scatter diagram for all the 10 students and calculate the correlation between marks of Physics and Mathematics.

- b) Two cards are drawn simultaneously or successively without replacement from a well-shuffled deck of 52 cards. Find the probability distribution of number of aces (x). Give a graphical representation of probability distribution.
- 2. a) There are two samples of 1200 and 900 people drawn from populations respectively, which have 30% and 25% of fair-haired people. Test whether the samples drawn from this population maintain difference or not. (Use  $\alpha = 0.05$ )
  - b) A bicycle shop sells the following number of bicycles from 1990 to 2000.

| Year | Number sold<br>(thousands) |
|------|----------------------------|
| 1990 | 3                          |
| 1991 | 3                          |
| 1992 | 3                          |
| 1993 | 3                          |
| 1994 | 6                          |
| 1995 | 6                          |
| 1996 | 6                          |
| 1997 | 6                          |
| 1998 | 9                          |
| 1999 | 10                         |
| 2000 | 12                         |

Compute the first three moving averages of length 3 for the bicycle sales data and place them in line with the corresponding year.

(5)

(6)

(4)

(5)

- 3. a) Two samples of 9 and 8 sizes give the sum of squares of deviations from respective means equal to 160 and 91 inches squares. Test whether these samples have been drawn from same normal population or not? (Use  $\alpha = 0.05$ )
  - b) In a locality of 18,000 families, a random sample of 840 families was taken. Of these 840 families, 206 families were found to have a monthly income of Rs. 500 or less. Give the confidence interval for the families having income Rs. 500 or less.

(5)

(5)

(7)

(5)

4. a) Plating of gold on wrist watches requires a chemical called AiCl<sub>3</sub>. Concentration of the chemical that is added to the solution is an important factor. The objective is to choose that concentration for which plating is uniform. Three concentration of AiCl<sub>3</sub> chosen were 5%, 15% and 20%. These were added in the solution and plating was done and thickness (in units) measured on 5 samples is gives below.

| Sample                                  | 1 | 2 | 3 | 4 | 5 |
|-----------------------------------------|---|---|---|---|---|
| $\downarrow$ Conc. of AiCI <sub>3</sub> |   |   |   |   |   |
| 5%                                      | 3 | 2 | 4 | 2 | 4 |
| 15%                                     | 4 | 4 | 3 | 2 | 4 |
| 25%                                     | 3 | 3 | 4 | 4 | 2 |

Use ANOVA to comment on whether the concentration of AiCI<sub>3</sub> gives same result or not. (Use  $\alpha = 0.05$ )

- b) Consider a population of 11 schools from which a sample of size 3 is to be selected. List all the possible samples by circular systematic sampling. (3)
- 5. a) Consider the case of tossing two dices. Let

A : be the event of getting an odd total

B: the event of getting on the first dice, and

C: the event of getting a total of seven on two dices.

Then

(i) Find  $P(A \cap C)$ ,  $P(A \cap B)$  and  $P(B \cap C)$ .

Check whether A, B and C are independent or not. Give reasons for your answers. (5)

b) It is desired to estimate average annual wool yield per sheep for a herd of 150 at a certain farm house using stratified simple random sampling. Sheeps in the herd are to be grouped into three strata on the basis of first shaving in days. Optimum method sample allocation is said to be used for selecting the overall sample of 25 sheeps from the three strata. Determine approximately optimum strata boundaries using the information on first shaving given below.

| Shaving days | No. of Sheep | $\sqrt{f}$    |
|--------------|--------------|---------------|
|              | (f)          |               |
| 30-70        | 6            | 2.45          |
| 70-110       | 2            | 1.414         |
| 110-150      | 1            | 1             |
| 150-190      | 4            | 2             |
| 190-230      | 2            | $1 \cdot 414$ |
| 230-270      | 7            | 2.646         |
| 270-310      | 8            | 2.828         |
| 310-350      | 20           | 4.472         |
| 350-390      | 10           | 3.162         |
| 390-430      | 25           | 5             |
| 430-470      | 40           | 6.325         |
| 470-510      | 25           | 5             |

- 6. a) Find the probability that at most 5 defective fuses will be found in a box of 200, if experience shows that 20% of such fuses are defective.
  - b) The following table gives the hours spent by 50 students in the playground in a week:

| Hours           | 0  | 2 | 4 | 6 | 8  | 10 |
|-----------------|----|---|---|---|----|----|
| No. of students | 10 | 6 | 8 | 6 | 10 | 10 |

Calculate the mean median and standard deviation of the hours required by students.

- c) In a television appearance, an MLA from a state asks voters in that state to indicate whether the MLA should vote against or for a particular piece of legislation. The MLA office receives 4100 replies. Since voters from western part tends to be democrats while those from eastern parts tend to e communists, the MLA divides the replies on the basis of their geographical origin. 68% of the replies from the western part are against the legislation and 36% of the replies from the eastern part are against it.
  - (i) Did the MLA carry out a stratified sampling?
  - (ii) Did the MLA carry out a stratified random sampling?
  - (iii) How would you justify the sample design?
  - (iv) What improvements would you suggest?
- 7. a) At a call centre, callers have to wait till an operator is ready to take their call. To monitor this process, 5 calls were recorded every hour for the 8-hour working day. The data below shows the waiting time in weeks:

| Time   | Sample number |    |    |    |    |
|--------|---------------|----|----|----|----|
|        | 1             | 2  | 3  | 4  | 5  |
| 9 a.m. | 8             | 9  | 15 | 4  | 11 |
| 10     | 7             | 10 | 7  | 6  | 8  |
| 11     | 11            | 12 | 10 | 9  | 10 |
| 12     | 12            | 8  | 6  | 9  | 12 |
| 1 p.m. | 11            | 10 | 6  | 14 | 11 |
| 2      | 7             | 7  | 10 | 4  | 11 |
| 3      | 10            | 7  | 4  | 10 | 10 |
| 4      | 8             | 11 | 11 | 11 | 7  |

(4)

(2)

(4)

Compute the control limits for  $\overline{x}$  and R -charts. Draw the control charts for  $\overline{x}$  and R, and comments.

b) Write three advantage and three disadvantage of using a sampling approach instead of a census approach for studying a characteristic.

(3)

(7)

8. a) A shop manufacturer is trying to determine whether or not to market a new type of shop. It chooses a random samples of equivalent size in England and France. It asks each of the people in each sample to try the new soap, and see whether he or she likes it better than other soaps. The results are as follows:

|                  | United States | England | France |
|------------------|---------------|---------|--------|
| Prefer new soap  | 81            | 43      | 26     |
| Do not prefer it | 219           | 257     | 274    |

Test the hypothesis that there are international difference in the proportion of people who prefer the new soap, using 5% level of significance.

b) Suppose from a total of 120 guava trees, 5 clusters of 4 trees each selected and the yield (in kg) is recorded below:

| Cluster | Trees |    |    |    |  |
|---------|-------|----|----|----|--|
|         | 1     | 2  | 3  | 4  |  |
| 1       | 5     | 4  | 2  | 15 |  |
| 2       | 11    | 1  | 4  | 7  |  |
| 3       | 26    | 10 | 19 | 11 |  |
| 4       | 7     | 15 | 12 | 10 |  |
| 5       | 2     | 22 | 8  | 6  |  |

Estimate the average yield per tree and its standard error.

- 9. a) A manufacture of rayon wants to compare that the yield strength of  $11.5 \text{ kg/mm}^2$  is met or not at 5% level of significance. The manufacturer draws a sample and calculates the mean to be  $12.8 \text{ kg/mm}^2$  and the standard derivation is known to be  $2.0 \text{ kg/mm}^2$ . Carry out the statistical test appropriate for this.
  - b) A box contains 10 screws, 3 of which are defective. Two screws are drawn at random. Find the probability that none of them is defective, if the sample is drawn
    - (i) with replacement,
    - (ii) without replacement. (4)
  - c) A researcher measures the temperature of a solution 5 times. The observations are  $25, 32, 27, 29, 30^{\circ}$  C. Determine an unbiased estimate of the temperature. (2)
- 10. Which of the following statements are true? Give reasons for your answer. (10)
  - (i) F-distribution is always used in goodness of fit.
  - (ii) Measure of central tendency in a data set refers to the extent to which the observations are scattered.

(5)

(5)

(4)

- (iii) A process is said to be under assignable cause when the points are above the VCL link of  $(\overline{X}, R)$  chart.
- (iv) Simple random sampling is done by using random number tables where the probability of drawing a digit is 0.1.
- (v) All time series have a trend.