70396

DECVI / DELVI / DCSVI / ACECVI / ACELVI / ACCSVI

Term-End Examination June, 2016

OIEE-001: BASICS OF ELECTRICAL ENGINEERING

Time: 2 hours Maximum Marks: 70

Note: Attempt any five questions. Question no. 1 is compulsory.

Answer all the following questions:

 $7 \times 2 = 14$

- 1. (a) The specific resistance depends upon the nature of the material of the conductor only. [T/F]
 - (b) The direction of current in an a.c. circuit is always in one direction. [T/F]
 - (c) In a three-phase system, the emfs are 30° apart. [T/F]
 - (d) The energy stored in an inductor is given by $\frac{1}{2} LI^2$ Joules. [T/F]
 - (e) The internal resistance of an ideal voltage source is infinite. [T/F]
 - (f) The power factor of a purely inductive circuit is infinite. [T/F]
 - (g) Phase angle between voltage and current is zero for a purely resistive circuit. [T/F]

P.T.O. .

- 2. (a) A coil consisting of 2,000 turns of copper wire has cross-sectional area of 0.8 mm². The mean length per turn is 20 cm and the resistivity of copper is 2×10⁻⁸ Ωm at normal working temperature. Calculate (i) the resistance of the coil, and (ii) the power dissipated, when the coil is connected across a 110 V d.c. supply.
 - (b) State and explain Ohm's law. What are its limitations?

8

6

8

8

- 3. (a) Explain the construction, working and application of any type of cell.
 - (b) Compare Primary and Secondary cells. 6
- 4. (a) Find (i) the current in the 15 Ω resistor, (ii) voltage across the 18 Ω resistor, and (iii) the power dissipated in the 7 Ω resistor of the circuit given below:

	(b)	State and explain the following:	6
		(i) KCL	
		(ii) KVL	
5.	(a)	Deduce the analogy between magnetic and electric circuits. What are the major differences between them?	8
	(b)	Write a short note on Lenz's law.	6
6.	(a)	Explain the following terms as applied to an a.c. circuit: (i) Admittance (ii) Conductance (iii) Susceptance	6
	(b)	A coil takes 2.5 A, when connected across a 200 V, 50 Hz main. The power consumed by the coil is found to be 400 W. Find the inductance and power factor of the coil.	8
7.	Write	e short notes on any <i>four</i> of the	
	follow	1	14
	(a)	Parallel Resonance	
	(b)	Self Induction	
	(c)	Power Factor	
	(d)	RMS Value	
	(e)	Balanced System with respect to 3-phase	
	(f)	Form Factor	