DECVI / DELVI / DCSVI / ACECVI / ACELVI / ACCSVI

Term-End Examination
June, 2016

OIEE-001 : BASICS OF ELECTRICAL ENGINEERING

Time: 2 hours
Maximum Marks : 70
Note: Attempt any five questions. Question no. 1 is compulsory.

Answer all the following questions:
$7 \times 2=14$

1. (a) The specific resistance depends upon the nature of the material of the conductor only. [T/F]
(b) The direction of current in an a.c. circuit is always in one direction. [T/F]
(c) In a three-phase system, the emfs are 30° apart. [T/F]
(d) The energy stored in an inductor is given by $\frac{1}{2} \mathrm{LI}^{2}$ Joules. [T/F]
(e) The internal resistance of an ideal voltage source is infinite. [T/F]
(f) The power factor of a purely inductive circuit is infinite. [T/F]
(g) Phase angle between voltage and current is zero for a purely resistive circuit. [T/F]
2. (a) A coil consisting of 2,000 turns of copper wire has cross-sectional area of $0.8 \mathrm{~mm}^{2}$. The mean length per turn is 20 cm and the resistivity of copper is $2 \times 10^{-8} \Omega \mathrm{~m}$ at normal working temperature. Calculate (i) the resistance of the coil, and (ii) the power dissipated, when the coil is connected across a 110 V d.c. supply.
(b) State and explain Ohm's law. What are its limitations?
3. (a) Explain the construction, working and application of any type of cell.
(b) Compare Primary and Secondary cells.
4. (a) Find (i) the current in the 15Ω resistor, (ii) voltage across the 18Ω resistor, and (iii) the power dissipated in the 7Ω resistor of the circuit given below :

(b) State and explain the following :
(i) KCL
(ii) KVL
5. (a) Deduce the analogy between magnetic and electric circuits. What are the major differences between them ?
(b) Write a short note on Lenz's law. 6
6. (a) Explain the following terms as applied to an a.c. circuit :
(i) Admittance
(ii) Conductance
(iii) Susceptance
(b) A coil takes 2.5 A , when connected across a $200 \mathrm{~V}, 50 \mathrm{~Hz}$ main. The power consumed by the coil is found to be 400 W . Find the inductance and power factor of the coil.
7. Write short notes on any four of the following :

$$
4 \times 3 \frac{1}{2}=14
$$

(a) Parallel Resonance
(b) Self Induction
(c) Power Factor
(d) RMS Value
(e) Balanced System with respect to 3-phase
(f) Form Factor

