B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

Term-End Examination

$0 \square 346$

June, 2016

BIEEE-007 : COMPUTER APPLICATIONS IN POWER SYSTEMS

Time: 3 hours
Maximum Marks : 70

Note: Attempt any five questions in all. All questions carry equal marks. Use of scientific calculator is allowed.

1. (a) Why are digital computers used in power system simulations? 7
(b) Explain the regulatory and policy developments in power systems.
2. Each line between buses $1-2,2-3,1-4$ has a total shunt admittance of -j 0.16 p .u. The shunt admittance of the remaining lines are neglected. Determine $\mathrm{Y}_{\text {BUS }}$.

Line (bus to bus)	Impedance (p.u.)
$1-2$	$0 \cdot 25+\mathrm{j} 1 \cdot 0$
$1-3$	$0 \cdot 20+\mathrm{j} 0 \cdot 8$
$1-4$	$0 \cdot 30+\mathrm{j} 1 \cdot 2$
$2-3$	$0 \cdot 20+\mathrm{j} 0 \cdot 8$
$2-4$	$0 \cdot 15+\mathrm{j} 0 \cdot 6$

3. (a) What do you mean by oriented graph, reference direction and system graph in context with the transmission line?
(b) Compare the different methods of load flow
solutions.
7
4. (a) Explain the optimal load flow study of power systems.
(b) Discuss the economic load scheduling of hydro-thermal plants.
5. (a) Draw the flow chart of load flow study, using Gauss-Siedel method. Mention its advantages and limitations.
(b) What do you understand by demand side management of power system control and management?
6. A five bus power system has been considered (Assume any type of configuration). Each line has an impedance of $0.05+\mathrm{j} 0.15 \mathrm{pu}$. The line shunt admittance may be neglected. The bus power and voltage specification are given in tabular form.

Bus No.	P_{D}	Q_{D} (in pu)	P_{G} in pu)	Q_{G} (in pu)	V (in pu)	Bus Specification
1	1	0.5	-	-	$1.02+\mathrm{j} 0$	slack
2	0	0	2	-	1.02	PV
3	0.5	0.2	0	0	-	PQ
4	0.5	0.2	0	0	-	PQ
5	0.5	0.2	0	0	-	PQ

(a) Develop $\mathrm{Y}_{\text {BUS }}$ matrix.
(b) Find $Q_{2}, \delta_{2}, V_{3}, V_{4}$ and V_{5} after first iteration using Gauss-Siedel method.
7. Write short notes on any two of the following:
(a) Two-winding transformer and
(b) Representation of transmission line
(c) Tap changing transformers and loads

