No. of Printed Pages: 4

BIEEE-006

BIEEE-006

P.T.O.

DIPLOMA IN ELECTRICAL ENGINEERING (DELVI)

UD166 Term-End Examination June, 2016

BIEEE-006: SWITCHGEAR AND PROTECTION

Ti	me:	2 hours	s Maximum N	Maximum Marks : 70		
questions from				1 is compulsory. Answer any four a questions no. 2 to 7. Use of scientific llowed.		
1.	Fi	ll in th	e blanks with most suitable option.	7×2=14		
	(a)	Elec	tromagnetic relays are	· ·		
		(i)	attracted armature type			
		(ii)	digital type			
		(iii)	Neither (i) nor (ii)			
	(b)		hholz relays are used for the prote	ction		
		(i)	generator			
		(ii)	transformer			
	-	(iii)	transmission line			

(6)	Compressed and is used in				
	(i)	vacuum circuit breaker			
	(ii)	air break circuit breaker			
	(iii)	air blast circuit breaker			
(d)	is used to sense the fault.				
	(i)	Relay			
	(ii)	Circuit breaker			
	(iii)	Fuse			
(e)	The load connected to the secondary of a CT is called				
	(i)	pick up value			
	(ii)	burden			
	(iii)	reset value			
(f)		amplitude comparator compares the of two input quantities.			
	(i)	magnitudes			
	(ii)	phase angles			
	(iii)	Both (i) and (ii)			
(g)	Imp	edance relays are			
	(i)	directional			
	(ii)	non-directional			
	(iii)	Neither (i) nor (ii)			
BIEEE-00	06	2			

2.	Explain the following in the context of relay							
	coordination: $4 \times 3 \frac{1}{2} = 14$							
	(a)	Time grading	-					
	(b)	Current grading						
	(c)	Combination of time and current grading						
	(d)	Pick up current						
3.	Derive the general relay equation for directional							
	relays. Explain the construction and operation of							
	an i	induction type directional overcurrent relay	7. 14					
4.	(a)	Derive the basic equation of a mho reand explain its characteristics.	lay					
	(b)	Explain the carrier current protection transmission lines in detail.	of 7					
5.	(a)	Explain the working of different protection for a 3-phase star connec	ted					
		generator.	7					
	(b)	Explain the construction and operation Buchholz relay.	of a					
6.	Explain the phenomenon of arc quenching in circuit breakers using							
	(a)	energy balance theory, and						
	(b)	recovery rate theory.	2×7=14					
BIE	EEE-0	006 3	P.T.O.					

- 7. A 132 kV alternator is connected to a circuit breaker. The inductive reactance up to the circuit breaker is 4.5 Ω per phase. The capacitance up to the circuit breaker between phase and neutral is 0.01 μF . Calculate
 - (a) frequency of restriking voltage transient, and
 - (b) maximum value of RRRV.

 $2 \times 7 = 14$