DIPLOMA IN ELECTRICAL ENGINEERING (DELVI) / ADVANCED LEVEL CERTIFICATE COURSE IN ELECTRICAL ENGINEERING (ACELVI)

00346

Term-End Examination
June, 2016

BIEE-029: POWER GENERATION SYSTEMS

Time: 2 hours Maximum Marks: 70

Note: Attempt any four questions from question no. 2 to 6. Question no. 1 is compulsory. All questions carry equal marks.

1. Choose the correct answer:

 $7 \times 2 = 14$

- (a) Economiser is used to heat
 - (i) air
 - (ii) feed water
 - (iii) flue gases
- (b) Steam turbines commonly used in steam power station are
 - (i) Condensing type
 - (ii) Non-condensing type
 - (iii) None of the above

- (c) Francis, Kaplan and Propeller turbines fall under the category of
 - (i) impulse turbines
 - (ii) reaction turbines
 - (iii) impulse reaction turbines
- (d) Main applications of solar energy may be considered in the following categories:
 - (i) Solar electric applications
 - (ii) Direct thermal applications
 - (iii) Both (i) and (ii)
- (e) Maximum wind energy available is proportional to
 - (i) square of the diameter of rotor
 - (ii) air density
 - (iii) cube of the wind velocity
- (f) In MHD generators, the conductor employed is
 - (i) gas
 - (ii) liquid metal or gas
 - (iii) liquid metal
- (g) Biogas consists of
 - (i) only methane
 - (ii) methane and CO₂ with some impurities
 - (iii) a special organic gas

2.	(a)	Explain the importance of non-conventional sources of energy in the present scenario.	7
	(b)	Explain the construction and working of solar water heaters.	7
3.	(a)	Define the term fuel cell. Explain the working principle of a fuel cell with a neat diagram.	7
	(b)	Explain the open and closed cycles of Ocean Thermal Electrical Conversion (OTEC).	7
4.	(a)	Enumerate essential elements of hydro-electric power plant.	7
	(b)	What safety measures need to be taken for the safe operation of hydro-electric plants? Give applications of hydro-electric plants.	7
5.	(a)	Explain the process of power generation by using gasifiers. Also list its applications.	7
	(b)	Discuss the different wet and dry processes of biomass conversion technologies.	7
6.	Write short notes on any two of the following: $2\times 7=1$		14
	(a)	MHD Generator	
	(b)	Thermoelectric Power Generation	
	(c)	Geothermal Energy Conversion	

3