No. of Printed Pages: 4

BIELE-012

B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

TITITI T Term-End Examination

June, 2016

BIELE-012 : ELECTRONIC SWITCHING CIRCUITS

Time : 3 hours

Maximum Marks : 70

- **Note :** Attempt any **seven** questions. All questions carry equal marks. Assume missing data, if any. Use of scientific calculator is permitted.
- (a) Show how a J-K flip-flop can be converted into a D flip-flop. Explain the change in behaviour by analysing its gate equivalent circuit.
 - (b) Give the classification of sequential circuits.

BIELE-012

P.T.O.

6

2. A sequential circuit has two D flip-flops, A and B, two inputs, x and y, and one output, z. The flip-flop input equations and circuits output are as follows :

$$D_A = x'y + xA$$
, $D_B = x'B + xA$, $z = B$

- (a) Draw the logic diagram of the circuit.
- (b) Tabulate the state table.
- 3. Design a two-input, two-output synchronous sequential circuit, which produces an output z = 1whenever any of the following input sequences occur: 1100, 1010 and 1001. The circuit resets to its initial state after a '1' output has been generated.
 - (a) Form the state diagram and state table.
 - (b) Draw the logic circuit.
- 4. (a) Determine the conditions under which two equivalent machines are isomorphic.
 - (b) Prove that, to every q-output, n-state Mealy Machine, there corresponds a q-output Moore Machine which accepts exactly the same sequences and has no more, than qn+1 states.

BIELE-012

2

10

10

4

5. For the flow table given below, determine all the essential output hazards and essential internal variable hazards.

State, output				
$x_1 x_2$				
00	01	11	10	
1),1	2, 0	3, 1	(5), 1	
4,0	2, 0	3, 1	8, 1	
4,0	7, 0	3,1	8, 0	
4,0	6, 1	9,0	8,0	
4, 0	6,1	9, 1	5, 1	
1, 0	(7, 0	9,1	5, 1	

6. A memory device has two binary inputs, Y_1 and Y_2 , and three binary outputs y_1 , y_2 and y_3 . When Y_1 is pulse, both y_1 and y_2 are complemented. It is not allowed to pulse Y_1 and Y_2 simultaneously. Use one such device to realize pulse sequential circuit shown in the table.

PS	NS		Z
	x ₁	x2	
Α	D	A	0
В	С	D	0
С	Α	B	0
D	B	В	1

BIELE-012

P.T.O.

10

- Prove that if a circuit is designed, so that it is hazard-free in its tie-sets, then it is also hazard-free in its cut-sets.
- 8. Briefly discuss how the static hazards are produced in combinational circuits. How can they be eliminated?
- Briefly discuss symmetric functions. List all the properties of symmetric functions. 10
- **10.** Write notes on any *two* of the following : $2 \times 5 = 10$
 - (a) Contact Network
 - (b) Identification of Symmetric Functions
 - (c) Sequence generator for generating the sequence 01100

BIELE-012