B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

TITIIE Term-End Examination
June, 2016

BIELE-012 : ELECTRONIC SWITCHING CIRCUITS

Time: 3 hours
Maximum Marks : 70
Note: Attempt any seven questions. All questions carry equal marks. Assume missing data, if any. Use of scientific calculator is permitted.

1. (a) Show how a J-K flip-flop can be converted into a D flip-flop. Explain the change in behaviour by analysing its gate equivalent circuit.
(b) Give the classification of sequential circuits.4
2. A sequential circuit has two D flip-flops, A and B, two inputs, x and y, and one output, z. The flip-flop input equations and circuits output are as follows :

$$
D_{A}=x^{\prime} y+x A, D_{B}=x^{\prime} B+x A, z=B
$$

(a) Draw the logic diagram of the circuit.
(b) Tabulate the state table.
3. Design a two-input, two-output synchronous sequential circuit, which produces an output $z=1$ whenever any of the following input sequences occur : 1100, 1010 and 1001. The circuit resets to its initial state after a ' 1 ' output has been generated.
(a) Form the state diagram and state table.
(b) Draw the logic circuit.
4. (a) Determine the conditions under which two equivalent machines are isomorphic.
(b) Prove that, to every q-output, n -state Mealy Machine, there corresponds a q-output Moore Machine which accepts exactly the same sequences and has no more, than $\mathrm{qn}+1$ states.
5. For the flow table given below, determine all the essential output hazards and essential internal variable hazards.

State, output			
$\mathrm{x}_{1} \mathrm{x}_{2}$			
00	01	11	10
$(1), 1$	2,0	3,1	$(5), 1$
4,0	$(2), 0$	3,1	8,1
4,0	7,0	$(3), 1$	8,0
$(4), 0$	6,1	9,0	$(8,0$
4,0	$6), 1$	9,1	5,1
1,0	$(7), 0$	$(9), 1$	5,1

6. A memory device has two binary inputs, Y_{1} and Y_{2}, and three binary outputs y_{1}, y_{2} and y_{3}. When Y_{1} is pulse, both y_{1} and y_{2} are complemented. It is not allowed to pulse Y_{1} and Y_{2} simultaneously. Use one such device to realize pulse sequential circuit shown in the table.

PS	NS		Z
	x_{1}	x_{2}	
A	D	A	0
B	C	D	0
C	A	B	0
D	B	B	1

7. Prove that if a circuit is designed, so that it is hazard-free in its tie-sets, then it is also hazard-free in its cut-sets. 10
8. Briefly discuss how the static hazards are produced in combinational circuits. How can they be eliminated? 10
9. Briefly discuss symmetric functions. List all the properties of symmetric functions. 10
10. Write notes on any two of the following : $2 \times 5=10$
(a) Contact Network
(b) Identification of Symmetric Functions
(c) Sequence generator for generating the sequence 01100
