B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

IITEE: Term-End Examination
June, 2016

BIELE-011 : DIGITAL SYSTEM DESIGN

Time: 3 hours
Maximum Marks : 70
Note: Attempt any seven questions. All questions carry equal marks. Use of scientific calculator is allowed.

1. Minimise the Boolean function $f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$
$=\Sigma \mathrm{m}(0,1,2,8,9,15,17,21,24,25,27,31)$ by using the tabular method. Show all prime implicants and essential prime implicants.
2. Discuss the working of a Johnson ring counter (4 bit). Design the same by using J-K flip-flop. State the steps/sequences it will go through, when it is loaded with initial value 1010.
3. Describe the process of controller and data path design with its block diagram and logic diagram.10
4. Design a 32×1 multiplexer by using 2×1 MUX only. How many numbers of $16 \times 1 \mathrm{MUX}$ are required to have a $256 \times 1 \mathrm{MUX}$?10
5. What is an instruction set ? Explain programmable controller with fixed instruction set with subroutine capability.10
6. (a) Design a ripple 3 -bit down counter by using T flip-flop.
(b) Explain about the race around condition and the remedy to overcome it.5
7. Write a data flow description for a 4-bit full adder. Include initial carry also.10
8. Design an asynchronous counter that counts the sequence $0,1,2,4,6,5,7$ and repeats by using J-K flip-flop.
9. (a) A binary counter is required to count up to 16383_{10}. How many flip-flops are required? If the input clock frequency is 10.5 MHz , what is the frequency of the MSB output?
(b) Write the Boolean expression for a 3-bit comparator to produce $\mathrm{A}>\mathrm{B}, \mathrm{A}<\mathrm{B}$ and $\mathrm{A}=\mathrm{B}$ conditions.
