No. of Printed Pages: 3

BIELE-006

DIPLOMA - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (DECVI)

00426

Term-End Examination June, 2016

BIELE-006: ELECTRONIC PRODUCT DESIGN

Tii	ne : 2	hours Maximum Marks:	Maximum Marks : 70	
No	e	Attempt any five questions. All questions can equal marks. Use of scientific calculator permitted.	•	
1.	(a)	Explain how can a zener diode be used as a voltage regulator.	7	
	(b)	Draw and explain the block diagram of a typical linear regulated power supply.	7	
2.	(a)	Discuss the uses of fuses in a circuit. Explain the working of over voltage protection circuit.	7	
	(b)	Derive the expression for the power dissipation in a linear regulated power supply.	7	

3.	(a)	Which one is preferred in FSM design, Mealy or Moore machines? Why?	7
	(b)	Explain ROM, PROM, EPROM and E^2 PROM with their applications and advantages.	7
4.	(a)	Design a generalized 4-bit sequence generator.	7
	(b)	Explain the working of a traffic controller with the help of ASM technique.	7
5.	(a)	Draw the circuit diagram of a unity gain Sallen-Key LP filter with its transfer function.	7
	(b)	Design a second order Butterworth low pass active filter for a higher cut-off frequency of 1 kHz.	7
6.	(a)	Discuss briefly about cascading of filters for higher order filter design.	7
	(b)	Explain KRC filters realization techniques.	7
7.	(a)	Draw and explain the block diagram of a Data Acquisition System. Also write its various applications.	7
	(b)	What are the criteria to select a suitable Analog-to-Digital converter for a microcontroller based Data Acquisition	
		System ?	7

- 8. Write short notes on any two of the following: $2\times 7=14$
 - (a) Thermal Consideration in Power Supply
 - (b) Sequence Detector
 - (c) PLDs
 - (d) Sensitivity Analysis in Analog Filters