No. of Printed Pages: 4

BIELE-004

B.Tech. – VIEP – ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination

June, 2016

00236

BIELE-004 : RF CIRCUITS

Time : 3 hours

Maximum Marks: 70

Note : Attempt any **seven** questions. Missing data may be suitably assumed. All questions carry equal marks.

- 1. (a) Describe the RF behaviour of passive components.
 - (b) Explain the following :
 - (i) Chip Resistors
 - (ii) Chip Capacitors
 - (iii) Surface Mounted Inductors 4+6=10
- 2. (a) What is a transmission line and what is its use in Microwave Engineering ? Explain various examples of transmission lines.
 - (b) Starting with basic definition of Standing Wave Ratio (SWR), show that it can be expressed as SWR = $\frac{1 + |\Gamma_0|}{1 - |\Gamma_0|}$. 5+5=10

BIELE-004

P.T.O.

- 3. (a) Derive the expression of 'Noise Figure' for a Two-port Network and for a Cascaded Multiport Network.
 - (b) Discuss the noise models for active and passive components. 5+5=10
- 4. For the circuit shown in Figure 1, assume a lossless line with $Z_0 = 75 \Omega$, $Z_G = 50 \Omega$ and $Z_L = 40 \Omega$. Compute the input power and power delivered to the load. Give you answer both in W and dBm. Assume the length of the line to be $\lambda/2$ with a source voltage of $V_G = 5 V$.

10

5. (a) Explain the characteristics of amplifiers.

 (b) Explain the amplifier power relations, mentioning RF source, transducer power gain, available power gain and unilateral power gain.

BIELE-004

2

- **6.** (a) Discuss the stability considerations of amplifier design.
 - (b) Explain large signal performance of a low noise amplifier. 5+5=10
- Design an 18 dB single-stage MESFET amplifier operated at 5.7 GHz. A MESFET operated at 5.7 GHz has the following S-parameters :

 $S_{11} = 0.5 \angle -60^{\circ}$ $S_{12} = 0.02 \angle 0^{\circ}$ $S_{21} = 6.5 \angle 115^{\circ}$ $S_{22} = 0.6 \angle -35^{\circ}$

- (a) Determine if the circuit is unconditionally stable.
- (b) Find the maximum power gain under optimal choice of the reflection coefficients, assuming the unilateral design ($S_{12} = 0$).
- (c) Adjust the load reflection coefficient such that the desired gain is realized using the concept of constant gain circles.
- 8. (a) Explain the principle of basic Oscillator Model and the role of Negative Resistance Oscillator.

BIELE-004

P.T.O.

10

5

3

(b) For a 200 MHz oscillation frequency, a Colpitts BJT oscillator in Common-Emitter configuration has to be designed. For the bias point of $V_{CE} = 3$ V and $I_C = 3$ mA, the following circuit parameters are given at a room temperature of 25°C:

> $C_{BC} = 0.1$ fF, $r_{BE} = 2 k\Omega$, $r_{CE} = 10 k\Omega$, $C_{BE} = 100$ pF. If the inductance should not exceed $L_3 = L = 50$ nH, find the values for the capacitances in the feedback loop.

- 9. (a) Explain the basic characteristics of mixers, by drawing its block diagram.
 - (b) Differentiate between single-balanced mixer and double-balanced mixer.
 - (c) Describe the frequency domain considerations of mixer design. 4+3+3=10

10. Write short notes on any *two* of the following: $2 \times 5 = 10$

- (a) LNA
- (b) Power Amplifiers
- (c) Frequency Synthesizers

BIELE-004

5