B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination
 June, 2016

BIELE-004 : RF CIRCUITS

Time: 3 hours
Maximum Marks : 70
Note: Attempt any seven questions. Missing data may be suitably assumed. All questions carry equal marks.

1. (a) Describe the RF behaviour of passive components.
(b) Explain the following :
(i) Chip Resistors
(ii) Chip Capacitors
(iii) Surface Mounted Inductors $\quad 4+6=10$
2. (a) What is a transmission line and what is its use in Microwave Engineering ? Explain various examples of transmission lines.
(b) Starting with basic definition of Standing Wave Ratio (SWR), show that it can be expressed as $S W R=\frac{1+\left|\Gamma_{0}\right|}{1-\left|\Gamma_{0}\right|}$.
$5+5=10$

BIELE-004
1
P.T.O.
3. (a) Derive the expression of 'Noise Figure' for a Two-port Network and for a Cascaded Multiport Network.
(b) Discuss the noise models for active and passive components. $\quad 5+5=10$
4. For the circuit shown in Figure 1, assume a lossless line with $\mathrm{Z}_{0}=75 \Omega, \mathrm{Z}_{\mathrm{G}}=50 \Omega$ and $\mathrm{Z}_{\mathrm{L}}=40 \Omega$. Compute the input power and power delivered to the load. Give you answer both in W and dBm . Assume the length of the line to be $\lambda / 2$ with a source voltage of $V_{G}=5 \mathrm{~V}$.

Figure 1
5. (a) Explain the characteristics of amplifiers.
(b) Explain the amplifier power relations, mentioning RF source, transducer power gain, available power gain and unilateral power gain.

$$
5+5=10
$$

6. (a) Discuss the stability considerations of amplifier design.
(b) Explain large signal performance of a low noise amplifier.

$$
5+5=10
$$

7. Design an 18 dB single-stage MESFET amplifier operated at $5 \cdot 7 \mathrm{GHz}$. A MESFET operated at $5 \cdot 7 \mathrm{GHz}$ has the following S-parameters :

$$
\begin{aligned}
& \mathrm{S}_{11}=0.5 \angle-60^{\circ} \\
& \mathrm{S}_{12}=0.02 \angle 0^{\circ} \\
& \mathrm{S}_{21}=6.5 \angle 115^{\circ} \\
& \mathrm{S}_{22}=0.6 \angle-35^{\circ}
\end{aligned}
$$

(a) Determine if the circuit is unconditionally stable.
(b) Find the maximum power gain under optimal choice of the reflection coefficients, assuming the unilateral design ($\mathrm{S}_{12}=0$).
(c) Adjust the load reflection coefficient such that the desired gain is realized using the concept of constant gain circles.
Explain the principle of basic Oscillator
8. (a) Explain the principle of basic Oscillator
Model and the role of Negative Resistance
Oscillator.
8. (a) Explain the principle of basic Oscillator
Model and the role of Negative Resistance
Oscillator.
(b) For a 200 MHz oscillation frequency, a Colpitts BJT oscillator in Common-Emitter configuration has to be designed. For the bias point of $\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}$, the following circuit parameters are given at a room temperature of $25^{\circ} \mathrm{C}$:
$\mathrm{C}_{\mathrm{BC}}=0.1 \mathrm{fF}, \mathrm{r}_{\mathrm{BE}}=2 \mathrm{k} \Omega, \mathrm{r}_{\mathrm{CE}}=10 \mathrm{k} \Omega$, $\mathrm{C}_{\mathrm{BE}}=100 \mathrm{pF}$. If the inductance should not exceed $L_{3}=L=50 \mathrm{nH}$, find the values for the capacitances in the feedback loop.
9. (a) Explain the basic characteristics of mixers, by drawing its block diagram.
(b) Differentiate between single-balanced mixer and double-balanced mixer.
(c) Describe the frequency domain considerations of mixer design. $\quad 4+3+3=10$
10. Write short notes on any two of the following :
$2 \times 5=10$
(a) LNA
(b) Power Amplifiers
(c) Frequency Synthesizers

