DIPLOMA - VIEP - COMPUTER SCIENCE AND ENGINEERING (DCSVI) / ADVANCED
 LEVEL CERTIFICATE COURSE IN COMPUTER SCIENCE AND ENGINEERING (ACCSVI)

Term-End Examination

OICS-001 : DATA STRUCTURES AND FILES

Time: 2 hours
Maximum Marks : 70
Note: Question no. 1 is compulsory. Attempt any four questions from the remaining.

1. Choose the correct answer.
(a) How many elements will be there in A [10] [5] [2] ?
(i) 50
(ii) 100
(iii) 17
(iv) None of the above
(b) Which of the following gives the memory address of integer variable a?
(i) $\quad \forall$ a;
(ii) a ;
(iii) \&a;
(iv) Address(a);
(c) The order followed by Queue Data structure is
(i) FIFO
(ii) LIFO
(iii) Random
(iv) None of the above
(d) One can convert an infix expression to postfix expression using a
(i) Stack
(ii) Queue
(iii) Array
(iv) None of the above
(e) Pointer Arithmetic is permitted on any type of pointers.
(i) True
(ii) False
(f) A linear search is always used in a sorted array.
(i) True
(ii) False
(g) An array element need not occupy contiguous memory location.
(i) True
(ii) False
2. (a) What is an array? Write a program in C to sum two matrices.
(b) What is a function? Differentiate between call by value and call by reference with examples.
3. (a) What is a pointer ? How can a pointer be used in a multidimensional array?
(b) Explain different file operations. Differentiate between sequential and random access files.
4. (a) Sort the following elements using bubble sort :

$$
10,20,5,30,25,45,8,60,2
$$

(b) Write a program to sort an array's elements using selection sort.
5. (a) Write an algorithm for binary search and explain it with the help of a suitable example.
(b) Write a C program to pop an element from a stack.
6. (a) Write the algorithm for evaluating a postfix expression.
(b) Explain Linear Queue and compare it with
Circular Queue.
7
7. (a) Define the binary tree representation. Explain primitive operations on a binary tree.
(b) Write an algorithm for creating a minimum spanning tree.
8. Write short notes on any four of the following :
$4 \times 3 \frac{1}{2}=14$
(a) Recursion
(b) Priority Queue
(c) Circular Linked List
(d) Hashing Function
(e) Abstract Data Types
(f) Structure and Union

