# DIPLOMA - VIEP - COMPUTER SCIENCE AND ENGINEERING (DCSVI) 

Term-End Examination<br>June, 2016

## BICS-033 : NUMERICAL METHODS AND COMPUTATION

Time: 2 hours
Maximum Marks : 70
Note: Attempt any five questions. Question no. 1 is compulsory. All questions carry equal marks.

1. Choose the correct answer from the given four alternatives :
(a) The forward difference operator is denoted by the symbol $\qquad$ .
(i) delta
(ii) omega
(iii) nabla
(iv) infinity
(b) In the function $\mathrm{y}=\mathrm{f}(\mathrm{x})$, the dependent variable is $\qquad$ .
(i) y
(ii) $x$
(iii) $f(x)$
(iv) a constant

BICS-033
(c) The polynomial equation of the $n^{\text {th }}$ degree has $\qquad$ roots.
(i) n
(ii) $\mathrm{n}+1$
(iii) $\mathrm{n}+2$
(iv) $\mathrm{n}-1$
(d) The order of Newton-Raphson method is
$\qquad$ .
(i) 1
(ii) 2
(iii) 3
(iv) 4
(e) The error in the trapezoidal rule is of the order $\qquad$ .
(i) h
(ii) $h^{\wedge} 2$
(iii) $h^{\wedge} 3$
(iv) $h{ }^{\wedge} 4$
(f) Fourth degree equations are also called
$\qquad$ equations.
(i) quadratic
(ii) cubic
(iii) linear
(iv) bi-quadratic
(g) In the function $y=f(x)$, the independent variable is $\qquad$ .
(i) y
(ii) x
(iii) $\mathrm{f}(\mathrm{x})$
(iv) a constant
2. (a) Find the positive root of $x^{3}-x=1$ and correct to four decimal places by bisection method.
(b) Using Newton's method, find the root between 0 and 1 of $x^{3}=6 x-4$ and correct to five decimal places.
3. (a) Solve for a positive root of $x^{3}-4 x+1=0$ by Regula-Falsi method. 7
(b) Solve the system of equations by Gauss elimination method.

$$
\begin{aligned}
& x+2 y+z=3 \\
& 2 x+3 y+3 z=10 \\
& 3 x-y+2 z=13
\end{aligned}
$$

4. (a) Solve the system of equations by Gauss-Jordan method. 7

$$
\begin{aligned}
& 2 x+y+4 z=12 \\
& 8 x-3 y+2 z=20 \\
& 4 x+11 y-z=33
\end{aligned}
$$

(b) Solve the system of equations by Gauss-Seidel method.

$$
\begin{aligned}
& 8 x-6 y+z=13 \cdot 67 \\
& 3 x+y-2 z=17 \cdot 59 \\
& 2 x-6 y+9 z=29 \cdot 29
\end{aligned}
$$

5. (a) What are the merits and demerits of Lagrange's formula ? Discuss.
(b) The following data are taken from the steam table :

Temp ( ${ }^{\circ} \mathrm{C}$ ): $\begin{array}{llllll}140 & 150 & 160 & 170 & 180\end{array}$
Pressure: $\begin{array}{llllll}3.685 & 4.854 & 6.302 & 8.076 & 10.225\end{array}$
Find the pressure at temperature $\mathrm{t}=142^{\circ}$.
7
6. (a) Using Lagrange's interpolation formula, find the value of $y$ at $x=5$ from the following table :

| $\mathrm{x}:$ | 1 | 2 | 3 | 4 | 7 |
| :--- | :--- | :--- | :--- | :---: | :---: |
| $\mathrm{y}:$ | 2 | 4 | 8 | 16 | 128 |

(b) Applying Taylor series method, find, correct to four decimal places, the values of $y(1 \cdot 1)$ and $y(1 \cdot 2)$, given $\frac{d y}{d x}=x y^{1 / 3}$ and $y(1)=1$.
7. (a) Using Euler's method, find $y(0 \cdot 4)$, given $\mathrm{y}^{\prime}=\mathrm{xy}, \mathrm{y}(0)=1$.
(b) Evaluate $y(1 \cdot 4)$, given

$$
\frac{d y}{d x}=x+y, y(1 \cdot 2)=2
$$

by Runge-Kutta method.
8. Explain any four of the following :
$4 \times 3 \frac{1}{2}=14$
(a) Linear Programming
(b) Cramer's Rule
(c) Types of Errors
(d) Golden Section Search
(e) Picard's Method
(f) Triangularization Method

