B.Tech. CIVIL ENGINEERING (BTCLEVI)

Term-End Examination
June, 2016

BICEE-004 : STRUCTURAL OPTIMIZATION
Time : 3 hours
Maximum Marks : 70
Note: Answer any seven out of ten questions. All questions carry equal marks. Use of scientific calculator is permitted. Assume any missing data suitably, if any.

1. Use graphical method to solve the linear programming problem

Maximize $\mathrm{z}=50 \mathrm{x}_{1}+60 \mathrm{x}_{2}$,
subject to the constraints:

$$
\begin{align*}
& 2 x_{1}+3 x_{2} \leq 1500 \\
& 3 x_{1}+2 x_{2} \leq 1500 \\
& 0 \leq x_{1} \leq 400,0 \leq x_{2} \leq 400 \tag{10}
\end{align*}
$$

2. (a) What do you mean by optimization ? Explain the different phases of optimization.
(b) Find the maximum and minimum value of the function

$$
\begin{equation*}
f(x)=x^{5}-5 x^{4}+5 x^{3}-1 . \tag{7}
\end{equation*}
$$

3. A firm can manufacture three types of cloth namely A, B and C. Three types of wool are required for it - red, green and blue. One unit length of type A cloth needs 2 yards of red wool and 3 yards of blue wool, one unit length of type B cloth needs 3 yards of red, 2 yards of green, and 4 yards of blue wool, while 1 unit length of C-type cloth needs 5 yards of green wool and 4 yards of blue wool. The firm has a stock of 8 yards of red wool, 10 yards of green wool and 15 yards of blue wool. The income obtained by the firm from one unit length of cloth of type A is ₹ 3 , of the type B is ₹ 5 and that of the type C is ₹ 4 . How should the firm allocate the available material so as to maximize total income from the finished cloth ? Formulate the linear programming problem.
4. (a) Obtain the set of necessary conditions for the non-linear programming problem :
Optimize $\mathrm{z}=4 \mathrm{x}_{1}^{2}+2 \mathrm{x}_{2}^{2}+\mathrm{x}_{3}^{2}-4 \mathrm{x}_{1} \mathrm{x}_{2}$ subject to the constraints

$$
\begin{align*}
& x_{1}+x_{2}+x_{3}=15 \\
& 2 x_{1}-x_{2}+2 x_{3}=20 . \tag{7}
\end{align*}
$$

(b) Define convex and concave functions. Also characterize them by partial derivatives.
5. Write the Kuhn-Tucker conditions for the following minimization problem :

Minimize $f(x)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$,
subject to the constraints

$$
\begin{align*}
& g_{1}(x)=2 x_{1}+x_{2} \leq 5 \\
& g_{2}(x)=x_{1}+x_{3} \leq 2 \\
& g_{3}(x)=-x_{1} \leq-1 \\
& g_{4}(x)=-x_{2} \leq-2 \\
& g_{5}(x)=-x_{3} \leq 0 \tag{10}
\end{align*}
$$

6. Find the point of minima of $x^{3}-3 x+2$, in the interval $0 \leq x \leq 3$, using quadratic interpolation method.
7. Solve the following linear programming problem by dynamic programming approach :

Maximize $z=2 x_{1}+5 x_{2}$,
subject to the constraints

$$
\begin{align*}
& 2 x_{1}+x_{2} \leq 43 \\
& 2 x_{2} \leq 46 \text { and } \\
& x_{1} \geq 0, x_{2} \geq 0 \tag{10}
\end{align*}
$$

8. Solve the following problem by geometric programming :

Minimize

$$
\begin{aligned}
& f(x)=16 x_{1} x_{2} x_{3}+4 x_{1} x_{2}^{-1}+2 x_{2} x_{3}^{-2}+8 x_{1}^{-3} x_{3} \\
& \text { where, } x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

9. Solve the following problem :

$$
\text { Maximize } z=2 x_{1}+3 x_{2}-2 x_{1}^{2}
$$

subject to the constraints

$$
\begin{align*}
& x_{1}+4 x_{2} \leq 4 \\
& x_{1}+x_{2} \leq 2 \\
& x_{1}, x_{2} \geq 0 \tag{10}
\end{align*}
$$

10. Formulate the dual of the following linear programming :

Maximize $z=5 x_{1}+3 x_{2}$
subject to the constraints

$$
\begin{align*}
& 3 x_{1}+5 x_{2} \leq 15 \\
& 5 x_{1}+2 x_{2} \leq 10 \\
& x_{1} \geq 0 \text { and } x_{2} \geq 0 \tag{10}
\end{align*}
$$

