B.Tech. - VIEP - MECHANICAL ENGINEERING / B.Tech. CIVIL ENGINEERING (BTMEVI / BTCLEVI)

$\square 01.36$

Term-End Examination
 June, 2016

BICE-027 : MATHEMATICS-III

Time : 3 hours

Maximum Marks : 70
Note: Attempt any ten questions. All questions carry equal marks. Use of scientific calculator is permitted.

1. Obtain the Fourier series for the function

$$
f(x)=\left\{\begin{array}{ll}
x, & -\pi<x<0 \\
-x, & 0<x<\pi
\end{array}\right. \text { and hence show that }
$$

$$
\begin{equation*}
\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots=\frac{\pi^{2}}{8} \tag{7}
\end{equation*}
$$

2. Find the half-range cosine series of the function $\mathrm{f}(\mathrm{x})=\mathrm{x} \sin \mathrm{x}, 0<\mathrm{x}<\pi$.
3. Obtain the Fourier series for the function

$$
f(x)=\left\{\begin{array}{cc}
\pi x, & 0 \leq x \leq 1 \tag{7}\\
\pi(2-x), & 1 \leq x \leq 2
\end{array} .\right.
$$

BICE-027
4. Obtain the Fourier series to represent
$f(x)=\frac{1}{4}(\pi-x)^{2}$ in the interval $0 \leq x \leq 2 \pi$ and
hence show that $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots=\frac{\pi^{2}}{12} . \quad 5+2=7$
5. Solve the partial differential equation

$$
\begin{equation*}
x^{2} p+y^{2} q=(x+y) z \tag{7}
\end{equation*}
$$

6. Solve : 7
$\frac{\partial^{2} z}{\partial x^{2}}+2 \frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial^{2} z}{\partial y^{2}}=2(y-x)+\sin (x-y)$.
7. Find the Fourier sine transform of $\frac{e^{-9 x}}{x}$. Hence find the Fourier sine transform of $\frac{1}{x} . \quad 4+3=7$
8. Find the Fourier transform of the function

$$
F(x)=\left\{\begin{array}{lll}
x, & \text { for } & |x|<a \\
0, & \text { for } & |x|>a
\end{array}\right.
$$

9. Solve the P.D.E. by separation of variables method : 7

$$
u_{x x}=u_{y}+2 u, u(0, y)=0, \frac{\partial}{\partial x} u(0, y)=1+e^{-3 y}
$$

10. Use the method of separation of variables to solve the equation $\frac{\partial^{2} u}{\partial x^{2}}-2 \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=0$.
11. A tightly stretched string with fixed end points $\mathrm{x}=0$ and $\mathrm{x}=l$ is initially at rest in its equilibrium position. If it is set vibrating by giving to each of its points an initial velocity $\lambda \mathrm{x}(l-\mathrm{x})$, find the displacement of the string at any distance x from one end at any time t.
12. Find the temperature in a bar of length 2 whose ends are kept at zero and lateral surface insulated, if the initial temperature is $\sin \frac{\pi \mathrm{x}}{2}+3 \sin \frac{5 \pi \mathrm{x}}{2}$.
13. Solve the equation $\frac{\partial^{2} \mathbf{u}}{\partial \mathbf{x}^{2}}+\frac{\partial^{2} \mathbf{u}}{\partial \mathbf{y}^{2}}=0$,
subject to the boundary conditions
$\mathrm{u}(0, \mathrm{y})=\mathrm{u}(l, \mathrm{y})=\mathrm{u}(\mathrm{x}, 0)=0$ and $\mathrm{u}(\mathrm{x}, \mathrm{a})=\sin \frac{\mathrm{n} \pi \mathrm{x}}{l}$.
14. An infinitely long plane uniform plate is bounded by two parallel edges and an end at right angles to them. The breadth is π. This end is maintained at temperature u_{0} at all points and other edges are at zero temperature. Determine the temperature at any point of the plate in the steady state.
15. Find the current i and voltage v in a transmission line of length l, t seconds after the ends are suddenly grounded given that $\mathrm{i}(\mathrm{x}, 0)=\mathrm{i}_{0}$ and $\mathrm{v}(\mathrm{x}, 0)=\mathrm{v}_{0} \sin \left(\frac{\pi \mathrm{x}}{l}\right)$ and that R and G are negligible.
