No. of Printed Pages: 2

BICE-025

B.Tech. CIVIL ENGINEERING (BTCLEVI)

Term-End Examination

TUEDE

June, 2016

BICE-025 : HYDRAULICS AND HYDRAULIC MACHINES

Time: 3 hours Maximum Marks: 70

Note: Answer any **seven** questions. All questions carry equal marks. Use of scientific calculator is allowed.

- 1. Differentiate between impulse and reaction turbines. Provide examples of each, along with neat sketches.
- 2. Define specific speed. Derive the expression for specific speed of a turbine.
- 3. A 3-stage centrifugal pump delivers 0.05 m³/s of water, when running at 1000 rpm. The diameter and width of impeller at outlet are 0.38 m and 0.025 m, respectively. The outlet vane angle is 45°. There is 6% reduction in flow area at outlet due to the thickness of the vanes. The mechanical and manometric efficiencies are 95% and 80%, respectively. Find the manometric head, specific speed and power of the pump.
- **4.** Describe in detail, the classification of channels based on flow properties.

10

10

5.	on a flow flow max	rectangular channel of base width 5 m laid a bed slope of 1 in 1000, the normal depth of is 2 m. It is desired to provide a hump in the without affecting the afflux. What is the simum height of the hump? Take ming's $n = 0.02$.	10
6.	for a with slop Man	culate the optimum channel section required a trapezoidal channel to discharge 3.5 m ³ /s a velocity of 0.5 m/s. The allowable side e for the channel is 1:1.25. Assume a ming's factor of 0.02. Find the values of ion factor and normal conveyance. Also find corresponding critical section factor.	10
7.		erive the conditions required for most efficient recular section.	
8.	(a)	Explain the phenomenon of hydraulic jump.	3
	(b)	A 50 m wide spillway chute is designed to carry a maximum discharge of 100 m ³ /s and has a bed slope of 3H: 1V. A hydraulic jump is formed on the chute at a point where the pre-jump flow depth is 0·3 m. What would be the post-jump depth? Estimate the length of jump and energy loss.	7
9.	Differentiate between the following: $5+5=10$		
	(a)	Positive and Negative Surge	

BICE-025 2

(b)

Pumps and Machines (Rotodynamic)

1,000