B.Tech. CIVIL ENGINEERING (BTCLEVI)

Term-End Examination

anEDE

June, 2016

BICE-025 : HYDRAULICS AND HYDRAULIC MACHINES

Time: 3 hours
Maximum Marks : 70

Note: Answer any seven questions. All questions carry equal marks. Use of scientific calculator is allowed.

1. Differentiate between impulse and reaction turbines. Provide examples of each, along with neat sketches.
2. Define specific speed. Derive the expression for
specific speed of a turbine.
10
3. A 3 -stage centrifugal pump delivers $0.05 \mathrm{~m}^{3} / \mathrm{s}$ of water, when running at 1000 rpm . The diameter and width of impeller at outlet are 0.38 m and 0.025 m , respectively. The outlet vane angle is 45°. There is 6% reduction in flow area at outlet due to the thickness of the vanes. The mechanical and manometric efficiencies are 95% and 80%, respectively. Find the manometric head, specific speed and power of the pump. 10
4. Describe in detail, the classification of channels based on flow properties.
5. In a rectangular channel of base width 5 m laid on a bed slope of 1 in 1000, the normal depth of flow is 2 m . It is desired to provide a hump in the flow without affecting the afflux. What is the maximum height of the hump ? Take Manning's $\mathrm{n}=0.02$.
6. Calculate the optimum channel section required for a trapezoidal channel to discharge $3.5 \mathrm{~m}^{3} / \mathrm{s}$ with a velocity of $0.5 \mathrm{~m} / \mathrm{s}$. The allowable side slope for the channel is $1: 1 \cdot 25$. Assume a Manning's factor of 0.02 . Find the values of section factor and normal conveyance. Also find the corresponding critical section factor.
7. Derive the conditions required for most efficient
circular section.
8. (a) Explain the phenomenon of hydraulic jump.
(b) A 50 m wide spillway chute is designed to carry a maximum discharge of $100 \mathrm{~m}^{3} / \mathrm{s}$ and has a bed slope of $3 \mathrm{H}: 1 \mathrm{~V}$. A hydraulic jump is formed on the chute at a point where the pre-jump flow depth is 0.3 m . What would be the post-jump depth ? Estimate the length of jump and energy loss.
9. Differentiate between the following: $5+5=10$
(a) Positive and Negative Surge
(b) Pumps and Machines (Rotodynamic)
