B.Tech. MECHANICAL ENGINEERING (COMPUTER INTEGRATED
 MANUFACTURING) / B.Tech. AEROSPACE ENGINEERING (BTAE)
 Term-End Examination
 June, 2016

$\square 1450$

BME-016 : ENGINEERING MECHANICS

Time: 3 hours
Maximum Marks : 70
Note: Attempt any five questions. All questions carry equal marks. Use of scientific calculator is permitted.

1. (a) Four forces are acting at O as shown in Figure 1. Find the resultant in magnitude and direction by using polygon law.

Figure 1
(b) A cantilever $\mathrm{AB}, 1.8 \mathrm{~m}$ long, is fixed at A and carries a uniformly distributed load of $20 \mathrm{kN} / \mathrm{m}$ over its entire length and a point load of 30 kN at the free end. Determine the reaction at A (Figure 2).

Figure 2
2. (a) The pitch of the thread of a screw jack is 5 mm and mean diameter is 60 mm . The coefficient of friction is $0 \cdot 08$. Find the force that should be applied at the end of a lever 200 mm long measured from the axis of the screw
(i) to raise the load of 20 kN ,
(ii) to lower the same load.
(b) Determine the position of the centroid of a quadrant $O A B$ of a circle, where arc $A B$ subtends an angle of 90° at the centre O, and radius $\mathrm{OA}=\mathrm{a}$.
3. (a) Determine the moment of inertia of the semicircle about axis AT which is tangential to the circle as shown in Figure 3.

Figure 3
BME-016
2
(b) The motion of a particle in XOY plane is defined by the equation

$$
r(t)=3 t(i)+\left(4 t-3 t^{2}\right) j .
$$

The distances are in metres. Find its radius of curvature and its acceleration when it crosses the x axis again.
4. (a) An automobile of mass 1500 kg traverses a 500 m radius curve at a constant speed of 50 kmph . Assuming no banking of the curve, calculate the force exerted by the tyres on the road to maintain motion along the curve.
(b) A homogeneous sphere and a homogeneous cylinder are free to roll without slipping down the inclined plane as shown in Figure 4 from rest. Which body reaches the bottom first?

Figure 4
5. (a) A ball of mass 2 kg moving with a velocity of $12 \mathrm{~m} / \mathrm{s}$ approaches another ball of mass 4 kg moving with a velocity of $4 \mathrm{~m} / \mathrm{s}$ in the opposite direction. After collision both the balls move together with a common velocity. Determine the common velocity.
(b) A flywheel of mass 20 kg and radius 100 mm is made to rotate at 600 rpm . Determine the K.E. of the flywheel. If the frictional couple at its bearing is 10 Nm , determine the number of revolutions it will make before coming to rest.
6. (a) A mass of 10 kg moving with a velocity of $10 \mathrm{~m} / \mathrm{sec}$ along x -direction follows another mass of 4 kg moving with $5 \mathrm{~m} / \mathrm{sec}$ in the same direction. Determine the final velocities of the two masses after collision, if $\mathrm{e}=0 \cdot 6$.
(b) Five weightless rods of equal length ' l ' are joined together so as to form a rhombus $A B C D$ with the diagonal $B D$. If a force P is applied to C downward and the system be suspended from A, show that the thrust in member BD is $(\mathrm{P} / \sqrt{3})$.
7. (a) Determine the forces in members DE and DC in the truss shown in Figure 5 below. The magnitude of the three applied forces are indicated in brackets.

Figure 5
(b) Determine the forces in the member of the frame given in Figure 6.

Figure 6
8. (a) Under which condition, will the mechanical advantage be equal to the velocity ratio?
(b) A system of pulleys is given in Figure 7. Obtain the acceleration of the weights P and Q, if $P=300 \mathrm{~N}, Q=200 \mathrm{~N}$. Assume the pulleys to be weightless and frictionless, and the string to be inextensible.

Figure 7

