No. of Printed Pages : 4

BIEL-016

B.Tech. – VIEP – ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination

June, 2016

00336

BIEL-016 : MICROWAVE AND RADAR ENGINEERING

Time : 3 hours

Maximum Marks: 70

P.T.O.

Note: Attempt any seven questions. Assume suitable missing data, if any. Question no. 1 is compulsory. Use of scientific calculator is allowed.

1.	(a)	What is degenerate mode of operation in	a
		waveguide?	

- (b) Find out the Q-factor of a cavity resonator.
- (c) Show how power can be measured by directional couplers, using a diagram.
- (d) Write down the assumptions taken while analysing 2-cavity klystron.
- (e) Write the expression of radar range equation and define all the parameters. $5 \times 2=10$

BIEL-016

1

- Solve the Helmholtz equation for a rectangular co-ordinate system considering different cases. Find the solution when the waveguide operates in TE_{mn} mode. 5+5
- (a) Write the theorems of Tee-junction and explain E-plane and H-plane Tee with corresponding S-matrix under matching conditions.
 - (b) A transmission line has a characteristic impedance of $50 + j \ 0.01 \ \Omega$ and is terminated in a load impedance of $73 j \ 42.5 \ \Omega$. Calculate

6

4

6

4

- (i) the reflection coefficient,
- (ii) the standing-wave ratio.
- 4. (a) Explain the frequency limitations on different parameters of a microwave transistor.
 - (b) Calculate the maximum allowable power for a transistor having the following parameters: Reactance = 1 Ω , Transit time cut-off frequency = 4 GHz, Maximum electric field = 1.6×10^5 V/cm, Saturation drift velocity = 4×10^5 cm/sec.

BIEL-016

2

- 5. (a) Explain the working of a Tunnel diode with its V I characteristics.
 - (b) Explain the limitations of conventional active devices at microwave frequency.
- 6. (a) Explain the operation of an IMPATT diode by drawing its structure.
 - (b) Compute the maximum CW output power and resonant frequency of an IMPATT diode having the following parameters : Carrier drift velocity = 2×10^7 cm/sec, Drift region length = 6 µm, Maximum operating voltage = 100 V, Maximum operating current = 200 mA, Efficiency = 15% and Breakdown voltage = 90 V.
- 7. (a) Explain the operation of CW Radar with a necessary block diagram. How is isolation between a transmitter and a receiver done? Give an example.
 - (b) Differentiate between Pulse and CW Radar.
- 8. (a) Derive the noise figure dependent Radar range equation.
 - (b) What do you mean by Radar Clutter ?

BIEL-016

P.T.O.

5

5

6

4

6

4

5

5

- 9. Write short notes on any *two* of the following: $2 \times 5 = 10$
 - (a) Microwave Circulator
 - (b) Gunn Diode
 - (c) TWT
 - (d) Radar Duplexer

BIEL-016