B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

June, 2016

BIEL-005 : ANALOG ELECTRONIC CIRCUITS

Time: 3 hours
Maximum Marks : 70
Note: Attempt any seven questions. All questions carry equal marks. Any missing data may be suitably assumed and mentioned. Use of scientific calculators is permitted.

1. For the network shown in Figure 1, determine
$4 \times 2 \frac{1}{2}=10$
(a) r_{e}
(b) Z_{i}
(c) Z_{0}
(d) A_{v}

Figure 1
BIEL-005
1
P.T.O.
2. Calculate the following for the Darlington emitter-follower circuit shown in Figure 2. $\quad 4 \times 2 \frac{1}{2}=10$
(a) Input Impedance $\left(\mathrm{Z}_{\mathrm{i}}\right)$ if $\mathrm{r}_{\mathrm{i}}=5 \mathrm{k} \Omega$
(b) AC Current Gain (A_{i})
(c) Output Impedance (Z_{o})
(d) AC Voltage Gain $\left(\mathrm{A}_{\mathrm{v}}\right)$

Figure 2
3. (a) Explain Multi-stage Frequency Effects. Assuming ' n ' identical stages of amplifiers cascaded together, show that for the low-frequency region and the high-frequency region, the cut-off frequency of the multi-stage amplifier is given respectively by the expressions given below :

Low-frequency region

$$
\mathrm{f}_{1}^{\prime}=\frac{\mathrm{f}_{1}}{\sqrt{2^{1 / n}-1}}
$$

High-frequencyregion

$$
\mathrm{f}_{2}^{\prime}=\mathrm{f}_{2}\left(\sqrt{2^{1 / \mathrm{n}}-1}\right)
$$

(b) A two-stage amplifier has a first stage gain of 50 dB and a second stage gain of 20 dB . What is the overall gain of the amplifier in dB ?
$7+3=10$
4. (a) Explain the operation of a Class-B push-pull amplifier with the help of a neatly labelled block diagram.
(b) Prove that the maximum efficiency of a Class-B amplifier is 78.5%. $\quad 5+5=10$
5. What are the advantages and disadvantages of tuned amplifiers ? With the help of a neatly labelled diagram, explain the operation of a single tuned amplifier giving its frequency response curve.
6. Explain the effect of negative feedback on the following:
$5 \times 2=10$
(a) Input Impedance
(b) Output Impedance
(c) Gain
(d) Noise
(e) Frequency Response
7. Give the circuit diagram of a crystal-controlled oscillator using a crystal in series-feedback path. Derive an expression for its input impedance and the frequency of oscillation. $3+7=10$
8. Give the internal block diagram of IC-555 timer and enlist the functions performed by each pin.

BIEL-005
3
P.T.O.
9. Explain the operation of an astable and a monostable multivibrator using IC-555 with the help of a neatly labelled circuit diagram. $5+5=10$
10. Write short notes on any two of the following:

$$
2 \times 5=10
$$

(a) Wein-Bridge Oscillator
(b) Double Tuned Amplifiers
(c) High-frequency Model for CE Configuration

