B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination
June, 2016

BIEL-002 : ANALOG AND INTEGRATED CIRCUITS DESIGN

Time: 3 hours
Maximum Marks : 70
Note: Attempt any seven questions. All questions carry equal marks. Missing data may be suitably assumed and mentioned. Use of scientific calculators is permitted.

1. Draw the circuit diagram of a dual-input, unbalanced-output differential amplifier. Derive the expression for $\mathrm{I}_{\mathrm{C}_{\mathrm{Q}}}$ and $\mathrm{V}_{\mathrm{CE}_{\mathrm{Q}}}$ using DC analysis. Also derive an expression for its voltage gain, input resistance and output resistance using AC analysis.
2. What is the need for constant-current bias circuit in the design of differential amplifiers? Explain the operation of a constant-current bias circuit using zener diodes with the help of a neatly labelled circuit. diagram and necessary mathematical steps. $3+3+4=10$

BIEL-002
P.T.O.
3. (a) Give the circuit diagram of a voltage-to-current converter with grounded load. Also prove that the load current $\left(I_{L}\right)$ is directly proportional to the input voltage $\left(\mathrm{V}_{\mathrm{in}}\right) \quad 2+3=5$
(b) Calculate the voltage at points A and B shown in Figure 1, when $\mathrm{V}_{1}=5 \mathrm{~V}$ and $\mathrm{V}_{2}=5 \cdot 1 \mathrm{~V}$. Take $\mathrm{R}=100 \mathrm{k} \Omega$.

Figure 1
4. (a) Show that the circuit shown in Figure 2 is a non-inverting integrator.

Figure 2
(b) For the circuit shown in Figure 3, it is found that $V_{0}=a_{1} V_{1}+a_{2} V_{2}+a_{3} V_{3}$. Find the values of a_{1}, a_{2} and a_{3}.

5

Figure 3
5. Explain the operation of a precision full-wave rectifier circuit using an op-amp with the help of neatly labelled circuit diagrams, input-output waveforms and necessary mathematical calculations.

$$
10
$$

6. Give the circuit diagram of a Triangular-Wave Generator that utilizes lesser number of components. Prove that the frequency of triangular-waves is given by the expression

$$
\begin{equation*}
f_{0}=\frac{R_{3}}{4 R_{1} R_{2} C_{1}} \tag{10}
\end{equation*}
$$

7. What are regenerative comparators ? Explain their operation with the help of neatly labelled circuit diagrams and waveforms. Prove that the hysteresis voltage is given as $V_{H}=\left(\frac{2 R_{2}}{R_{1}+R_{2}}\right)\left(+V_{\text {sat }}\right)$.

BIEL-002
8. Draw the circuit diagram of a second order Sallen-Key low pass filter. Derive an expression for its transfer function and find various filter parameters.
9. Define a logarithmic amplifier and give its basic diagram. What are the drawbacks of the above circuit? How are they modified in the other form of \log amplifiers? Explain.10
10. Write short notes on any two of the following :
$2 \times 5=10$
(a) PLL as FSK Demodulator
(b) Clippers using Op-Amps
(c) Offset Nulling Techniques

