B.Tech. Civil (Water Resources Engineering)

Term-End Examination

June, 2016

ET-533(B) : OPEN CHANNEL FLOW

Time: 3 hours
Maximum Marks : 70
Note: Attempt any five questions. All questions carry equal marks. Use of scientific calculator is permitted.

1. (a) Define the concept of an open channel flow and distinguish between pipe flow and open channel flow. Explain uniform flow.
(b) Given a trapezoidal channel with a bottom width of 3 m , side slopes of $1.5: 1$, and longitudinal slope of 0.0016 and $n=0.013$, determine the normal discharge, if the normal depth of flow is 2.6 m .
2. (a) Water flows in a rectangular channel, 2.0 m wide, at a velocity of $2.8 \mathrm{~m} / \mathrm{s}$ and at a depth of 2.2 m . There is an upward step of 0.72 m in the channel bed. What expansion in width must take place simultaneously for this flow to be possible as specified? $\quad 7$

ET-533(B) $1 \quad$ P.T.O.
(b) Water flows in a horizontal channel with a velocity of $8.0 \mathrm{~m} / \mathrm{s}$ at a depth of 1.0 m . Find the conjugate depth and the energy loss in the jump.
3. (a) Enumerating the basic assumptions, derive the dynamic equation of gradually varied flow in an open channel.
(b) Trace the profile of a hydraulic drop and locate the hydraulic jump in an open channel.
4. (a) Explain the graphical integration method of computation of water surface profile in an open channel.
(b) Describe the salient features of standard step method, as applied to natural channels, to compute the flow profiles in a gradually varied flow.
5. (a) A discharge of $15 \mathrm{~m}^{3} / \mathrm{s}$ flows with a depth of 1.5 m in a rectangular channel, 5 m wide. At a downstream section the width is reduced to 4.5 m and the channel bed is raised by 0.10 m . What will be the state of water surface elevations in the transitions?
(b) Deduce the expressions for the energy dissipation at the toe of a spillway.
6. (a) Explain the phenomenon of surges in power canals with suitable sketches. 7
(b) Determine the wavelength and celerity for a wave whose period is given to be 12 seconds in a water body of depth equal to 30 m . 7
7. (a) Compute the shape of the wave profile by the integration of the dynamic equation. 7
(b) Explain the dynamic effect of wave action. 7
8. Write short notes on the following : $\quad 4 \times 3 \frac{1}{2}=14$
(a) Hydraulic Jump
(b) Flow Profiles
(c) Slotted Roller Bucket Type Energy Dissipator
(d) Energy Propagation

