B.Tech. AEROSPACE ENGINEERING (BTAE)

Term-End Examination

$0 \square 298$

June, 2016

BASE-005 : INTRODUCTION TO COMPUTATIONAL FLUID DYNAMICS

Time : 3 hours

Maximum Marks : 70
Note: Attempt any seven questions. All questions carry equal marks. Use of scientific calculator is permitted.

1. (a) Derive the energy equation for a viscous flow in conservative form.
(b) Differentiate between conservative and non-conservative forms of fluid flow. 5
2. (a) Explain the difficulties of evaluating the
influences of a panel at its own control
point. 5

(b) Discuss the application of CFD in Aerospace
Engineering. 5
3. (a) Classify the following system of equations :
(i) $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$
(ii) $\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}=0$
(b) Draw the propagation of disturbance in subsonic, supersonic and sonic speeds.
4. (a) Explain the physical behaviour of Hyperbolic PDE in CFD with suitable examples.
(b) Discuss the need of upwind type
discretization. Explain.
5. (a) State and explain the difference between explicit and implicit methods with suitable examples.

6. Derive the continuity equation in differential form for incompressible how.
7. (a) Show that the Laplace's equation given below is elliptical in nature :

$$
\frac{\partial^{2} \phi}{\partial \mathrm{x}^{2}}+\mathrm{c}^{2} \frac{\partial^{2} \phi}{\partial \mathrm{y}^{2}}=0
$$

(b) Discuss about the Dirichlet and Neumann boundary condition with suitable examples.
8. (a) Compare the generation of grids in physical and computational planes.5

(b) Draw a neat sketch and show vortex lattice
along a wing. 5
9. Derive the first order accurate forward difference and backward finite difference approximation for the second derivative of ' f '. with respect to ' x ', using Taylor series expansion. 10
10. Explain the need for turbulence modeling in dealing with CFD problems. What are the various turbulence models used in CFD problems? 10

