No. of Printed Pages : 2

BASE-003

B.Tech. AEROSPACE ENGINEERING (BTAE)

Term-End Examination

00328

June, 2016

BASE-003 : HIGH SPEED AERODYNAMICS

Time : 3 hours

Maximum Marks: 70

Note : Attempt any **seven** questions. Each question carries equal marks.

1.	Explain the shock expansion technique for curved surfaces with a neat sketch.	10
2.	Explain the design considerations for supersonic aircrafts in detail.	10
3.	Derive the coefficient of pressure for hypersonic Prandtl-Meyer flow in terms of hypersonic similarity parameter.	10
4.	Derive the coefficient of pressure for a plate submerged in uniform flow at an angle α by using Newtonian flow theory.	10

1

BASE-003

P.T.O.

5.	Explain the significance of angle of attack in	
	subsonic compressible flow.	10
6.	Discuss small perturbation potential theory.	10
7.	Explain the conical flow method treatment for	
	swept back wings.	10
8.	Discuss flow past unswept airfoils in detail.	10
9.	Write short notes on any two of the following: 5+5=	=10
	(a) Consequence of Linearity	
	(b) Lift Effect	
	(c) Transonic Flow	
10.	Explain briefly any <i>two</i> of the following : 5+5=	=10
	(a) Mach Cone	
	(b) Mach Waves	
	(c) Mach Angle	