B.Tech. AEROSPACE ENGINEERING (BTAE)
Term-End Examination
June, 2016

BAS-017 : FLIGHT MECHANICS

Time: 3 hours
Maximum Marks : 70

Note: Attempt seven questions in all. Question no. 1 is compulsory. Attempt any six questions from the remaining questions. Use of scientific calculator is permitted.

1. (a) Define longitudinal static stability. Show the conditions for static stability and the condition for making the aircraft trimmed at positive angle of attack with the help of a plot.
(b) Define weathercock stability with the help of sketches.
(c) Explain the term 'damping in pitch' with the help of a figure.
(d) Show with the help of sketches, how trim condition of an aircraft can be changed without changing stability.
2. (a) Define stick-fixed neutral point. Explain how the stick-fixed neutral point can be calculated experimentally. Use sketches wherever required.
(b) Define static margin. What is its importance?

2
3. Explain the following in brief :
$2 \times 5=10$
(a) Aerodynamic balancing and balancing methods
(b) Flutter and its control
4. (a) Derive the expression for elevator angle to trim.
(b) Calculate the elevator angle to trim from the following data of an aircraft : 5

$$
\begin{array}{ll}
\mathrm{W}=25000 \mathrm{~N} & \mathrm{C}_{\mathrm{m}_{\alpha}}=-0.4 \text { per rad } \\
\mathrm{V}=120 \mathrm{~m} / \mathrm{s} & \mathrm{C}_{\mathrm{m}_{\delta_{e}}}=-0.7 \text { per rad }
\end{array}
$$

$S=30 \mathrm{~m}^{2}$
$\mathrm{C}_{\mathrm{L}_{\delta_{e}}}=0.3$ per rad
$\rho=0.95 \mathrm{~kg} / \mathrm{m}^{3}$
$\mathrm{C}_{\mathrm{m}_{0}}=0.06$
$\mathrm{C}_{\mathrm{L}_{\alpha}}=5 \cdot 2$ per rad
5. Define the following terms :
(a) Elevator control power
(b) Adverse yaw
(c) Floating characteristics
(d) Dynamic stability
(e) Dihedral effect
6. Calculate $\mathrm{C}_{\mathrm{m}_{0}}^{\prime}$ (pitching moment at zero lift) and $\mathrm{C}_{\mathrm{m}_{\alpha}}^{\prime}$ (pitching moment curve slope) for stick-free longitudinal case using the following data :
$\mathrm{C}_{\mathrm{L}_{0_{\mathrm{w}}}}=0.3 \quad \mathrm{C}_{\mathrm{mac}_{\mathrm{w}}}=-0.11$
$\mathrm{C}_{\mathrm{L}_{\mathrm{se}}}=0.31$
$\mathrm{C}_{\mathrm{L}_{\mathrm{W}}}=0.1$ per deg $\quad \eta_{\mathrm{t}}=0.9$
$\mathrm{C}_{\mathrm{L}_{\mathrm{t}}}=0.09$ per deg $\quad l_{\mathrm{t}}=6 \mathrm{~m}$
$\mathrm{X}_{\mathrm{Cz}}=0.3 \overline{\mathrm{C}}$
$\mathrm{S}_{\mathrm{w}}=27 \mathrm{~m}^{2}$
$X_{a c}=0.25 \overline{\mathrm{C}}$
$\mathrm{S}_{\mathrm{t}}=5 \mathrm{~m}^{2}$
$\mathrm{AR}_{\mathrm{w}}=7.5$ $\overline{\mathrm{C}}=2 \mathrm{~m}$
$\mathrm{C}_{\mathrm{m}_{\text {fus }}}=0.01$
$\mathrm{C}_{\mathrm{m}_{\alpha_{\text {fus }}}}=0.11$ per rad
$i_{w}=+1.5 \mathrm{deg}$
$\mathrm{C}_{\mathrm{h}_{\delta_{e}}}=-0.025$ per rad
$i_{t}=-1.5 \mathrm{deg}$
$\mathrm{C}_{\mathrm{h}_{\alpha}}=-0.015 \mathrm{per} \mathrm{rad}$
7. Derive the expression for rudder power. What is rudder lock ? How can rudder lock be taken care of?
8. What is maneuver point ? Derive the expression for elevator angle per ' g ' for pull-up and turn maneuver.
9. Explain the following in brief :
(a) Cross-coupling of lateral and directional effects.5
(b) Sketch of C.G. range for stick-fixed and stick-free cases for static and maneuvering longitudinal cases.

