## BACHELOR OF COMPUTER APPLICATIONS （BCA）（Revised）

## Term－End Examination <br> June， 2016

## ロロロロG

## BCS－042 ：INTRODUCTION TO ALGORITHM DESIGN

Time： 2 hours
Maximum Marks ： 50
Note：Question no． 1 is compulsory，carrying 20 marks． Answer any three questions from the rest．

1．（a）What is an algorithm ？Briefly explain time complexity and space complexity of an algorithm．
（b）Define notation $\Omega$（Big Omega）．If $\mathrm{f}(\mathrm{n})=2 \mathrm{n}^{3}+3 \mathrm{n}^{2}+1$ and $\mathrm{g}(\mathrm{n})=2 \mathrm{n}^{2}+3$ ，then show $\mathrm{f}(\mathrm{n})=\boldsymbol{\Omega}(\mathrm{g}(\mathrm{n})$ ）．
（c）Arrange the following growth rates in increasing order ：

$$
O\left(n^{2}\right), O\left(3^{n}\right), O(n), O(\log n)
$$

（d）Draw all minimum spanning trees of the following weighted connected graph ：

(e) Write linear search algorithm and explain its best case, worst case and average case time complexity.
2. (a) Given the following list of 8 integers, sort them using insertion sort. Determine the number of comparisons required by the algorithm. Also find the total number of assignment operations in this process.

| 10 | 7 | 12 | 6 | 8 | 15 | 25 | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(b) Write any four characteristics of greedy algorithm.
3. (a) What is recurrence relation ? Draw a recursion tree for recurrence

$$
\begin{equation*}
T(n)=2 T(n-1)+1 . \tag{4}
\end{equation*}
$$

(b) Write adjacency list and adjacency matrix representation of the following graph :

4. (a) Write binary search algorithm and search the value 28 in the following list, using binary search algorithm and show the steps :

$$
1,7,18,27,28,30,39
$$

(b) Write Prim's algorithm for finding minimum spanning tree. Find the complexity of this algorithm.
5. (a) Define the following terms:
(i) Connected graph
(ii) Cycle in an undirected graph
(b) Consider the following fractional knapsack problem :
$\mathrm{M}=20$;
Profits

$$
\begin{aligned}
& \left(P_{1}, P_{2}, P_{3}\right)=(25,24,15) \\
& \left(w_{1}, w_{2}, w_{3}\right)=(18,15,10)
\end{aligned}
$$

Show the running of the greedy algorithm for fractional knapsack.

