MASTER IN MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE [M. SC. (MACS)]
 Term-End Examination
 December, 2023

MMTE-006 : CRYPTOGRAPHY
Time : 2 Hours
Maximum Marks : 50
Note: (i) Answer any four questions from question nos. 1 to 5.
(ii) Question No. 6 is compulsory.

1. (a) Let

$$
\mathbf{F}_{2^{4}}=\mathbf{F}_{2} \frac{[x]}{\left\langle x^{4}+x+1\right\rangle}
$$

Then
$r=x+\left\langle x^{4}+x+1\right\rangle \quad$ is \quad a \quad primitive element of $\mathbf{F}_{2^{4}}$. Write all the elements of $\mathbf{F}_{2^{4}}$ as polynomials in r. Also write the vector representation of the elements. 5
P. T. O.
(b) List all the various modes of operation of block ciphers. Why is ECB mode weak for encryption?
(c) What is the difference between true random numbers and Pseudo random numbers?
2. (a) Let G be group \mathbf{Z}_{n}^{*}. For which of the following values of n is G cyclic? 5

$$
17,20,38,50
$$

Find the number of primitive roots of \mathbf{Z}_{17}^{*}.
(b) List five tests for testing randomness of sequences. Describe the frequency test and the serial test.
3. (a) Encrypt the text ATTACK POSTPONED UNTIL TWO AM XYZ twice by applying the transposition cipher with the permutation: 5

1	2	3	4	5	6	7
2	5	1	3	6	7	4

(b) Let $n=77$ be the modulus for a RSA cryptosystem. Check whether 10 is a proper exponent for encryption. Find the decryption exponent if the encryption exponent is 7 .
4. (a) Alice and Bob decide to use Elgamal cryptosystem. Bob chooses $p=31, g=3$ and 29 as the public key and keeps $x=9$ as secret key. Alice wants to send the message $\mathrm{M}=7$ to Bob. She chooses $k=5$ as the secret parameter. What is the cipher text ? Explain how Bob will decrypt the cypher text.
(b) What is birthday paradox ? Explain how this is used to attack hash functions. 5
5. (a) Alice wants to use the digital signature standard (DSS) algorithm for signing messages. She chooses $p=23, q=11, g=5$ and the secret value $a=3$ and publishes the value $(p, q, \alpha, \beta)=(23,11,2,8)$. She wants to sign the message $\mathrm{M}=10$. For signing she chooses the value $k=5$. Find the digital signature. How will Bob check the signature?
(b) Given the initial sequence 10101100 , find the recurrence that generates it.
6. Which of the following statements are true and which are false ? Justify your answers :
(a) $7^{1228} \equiv 1(\bmod 1229)$
(b) \mathbf{Z}_{15}^{*} is a cyclic group
(c) Digital signature algorithms provide confidentiality
(d) Any block can be used as a stream cipher
(e) A hash function h is collision resistant, if given M and $h(\mathrm{M})$ it is difficult to find M^{\prime} such that $h(\mathrm{M})=h\left(\mathrm{M}^{\prime}\right)$.

