No. of Printed Pages : 6 MMTE-005

M. SC. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M. SC. (MACS) Term-End Examination December, 2023 MMTE-005 : CODING THEORY

Time : 2 Hours

Maximum Marks : 50

Note : (*i*) *There are* **six** *questions in this paper.*

- (ii) The **sixth** question is compulsory.
- (*iii*) Do any **four** questions from question **one** to question **five**.
- (iv) Show all the relevant steps. Do the rough work at the bottom or at the side of the page only.
- (a) When do we say that the parity check matrix of a [n,k] linear code is in standard from. Check whether the parity matrix

Here $H = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$

of a linear code C is in standard form or not. Also, determine the length and dimension of C? 3

- (b) Define the Hamming distance between two codewords. Find the Hamming distance between the two codewords 000110 and 110101.
- (c) What is a repetition code ? If, in a repetition code in which the message of length is sent thrice, the codeword 110 111 110 is received, decode the message assuming there is at most one error.
- (d) Let **C** be a binary cyclic of length nine with generator polynomial $x^6 + x^3 + 1$. Find the generator matrix and the parity check matrix of the code **C**. 3
- 2. (a) Let $n \in \mathbb{N}$, q be a power of a prime and $0 \le s < n$. Define the q-cyclotomic coset of s modulo n. Find the 8-cyclotomic set of 1 modulo 19. 3
 - (b) Does there exist a quadratic residue code of length 17 over \mathbf{F}_{11} ? Give reasons for your answer. 2

(c) Find the gcd of

$$x^5 + 2x^3 + 2x^2 + x + 1, x^3 + x + 1 \in \mathbf{F}_3[x].$$
 2

(d) Let
$$\mathbf{C}_1$$
 be the [4,3,2] binary linear code
generated by $\begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$ and let \mathbf{C}_2 be the

[4,1,4]- binary linear code generated by [1111]. Let C be the code obtained through using $(\mathbf{u} | \mathbf{u} + \mathbf{v})$ construction on the codes C_1 and C_2 . Find the generator matrix of C. Also, give the length and the dimension of C. 3

- 3. (a) Prove that the integers modulo n do not form a field if n is not a prime. 2
 - (b) The systematic generator matrix for a [6,3] linear block code is $\begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \end{bmatrix}$. Compute the standard array for syndrome decoding. 5
 - (c) Check whether the polynomical $x^3 + x + 1 \in \mathbf{F}_5$ is primitive. You are given that $x^{30} \equiv x^2 + 1 \pmod{x^3 + x + 1}$. You may assume that the polynomical is irreducible.

P. T. O.

- (a) Find a generator polynomial for a [13,10]-4. BCH code. Use $x^3 + 2x + 2 \in \mathbf{F}_3[x]$ as the primitive polynomial for F_{27} , and Table 1. 5
 - (b) Find the weight distribution of the binary code generated by

$$\mathbf{G} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$

Find the weight enumerator polynomial of the code. Also, find the weight enumerator poly-nomial of the dual code. $\mathbf{5}$

(a) Let \mathbf{C} be the [7,4,2] binary code with the 5. following parity check matrix :

	[1	1	1	0	0	0	0
	1	0	0	1	1	0	0
	1	0	0	0	0 1 0	1	1
i	α^i						
1	α						
2	α^2						
3	α + 2						
4	$\alpha^2 + 2\alpha$						
5	$2\alpha^2 + \alpha + 2$						
6	$\alpha^2 + \alpha + 1$						
7	α^2 +	- 20	χ+	2			
8	$2\alpha^2$	+ 2	2				

9 $\alpha + 1$ 10 $\alpha^2 + \alpha$ 11 $\alpha^2 + \alpha + 2$ 12 $\alpha^2 + 2$ $13 \ 2$ 14 2α $15 \ 2\alpha^2$ $16 \quad 2\alpha^2 + 1$ $17 \quad 2\alpha^2 + \alpha$ 18 $\alpha^2 + 2\alpha + 1$ $19 \quad 2\alpha^2 + 2\alpha + 2$ $20 \quad 2\alpha^2 + \alpha + 1$ 21 $\alpha^2 + 1$ 22 $2\alpha + 2$ 23 $2\alpha^2 + 2\alpha$ $24 \quad 2\alpha^2 + 2\alpha + 1$

 $25 \quad 2\alpha^2 + 1$

Table 1 : Powers of $a \in \mathbf{F}_{27}$ where $a^3 + 2a + 1 = 0$

- (i) Give the Tanner graph for this code. 3
- (ii) List all the codeword's of C and hence find its minimum distance. 2

P. T. O.

(b) List all the code words of the code C over \mathbf{Z}_4 generated by

```
\begin{bmatrix} 1 & 2 & 3 & 0 & 1 \\ 2 & 1 & 0 & 1 & 1 \end{bmatrix}
```

Also find the Lee weight distribution of the code. 5

- Which of the following statements are true and which are false ? Justify your answer with short proof or a counter example.
 - (a) If F is a field and the polynomial $p(x) \in F[x]$ has no roots in F, then p(x) is irreducible over F.
 - (b) The code with generator matrix.

 $\begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$

has a unique codeword of weight three.

- (a) A quadratic code of length seven exists over $\mathbf{F}_{3.}$
- (b) The parity check matrix of a turbo code can be the identify matrix.
- (e) Every perfect code is self dual.

MMTE-005