M. SC. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M. SC. (MACS)

Term-End Examination
December, 2023
MMTE-005 : CODING THEORY
Time : 2 Hours
Maximum Marks : 50

Note: (i) There are six questions in this paper.
(ii) The sixth question is compulsory.
(iii) Do any four questions from question one to question five.
(iv) Show all the relevant steps. Do the rough work at the bottom or at the side of the page only.

1. (a) When do we say that the parity check matrix of a $[n, k]$ linear code is in standard from. Check whether the parity matrix

$$
\mathrm{H}=\left[\begin{array}{lllll}
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

P. T. O.
of a linear code \mathbf{C} is in standard form or not. Also, determine the length and dimension of \mathbf{C} ?
(b) Define the Hamming distance between two codewords. Find the Hamming distance between the two codewords 000110 and 110101.
(c) What is a repetition code ? If, in a repetition code in which the message of length is sent thrice, the codeword 110111110 is received, decode the message assuming there is at most one error.
(d) Let \mathbf{C} be a binary cyclic of length nine with generator polynomial $x^{6}+x^{3}+1$. Find the generator matrix and the parity check matrix of the code \mathbf{C}.
2. (a) Let $n \in \mathbf{N}, q$ be a power of a prime and $0 \leq s<n$. Define the q-cyclotomic coset of s modulo n. Find the 8 -cyclotomic set of 1 modulo 19.
(b) Does there exist a quadratic residue code of length 17 over \mathbf{F}_{11} ? Give reasons for your answer.
(c) Find the gcd of
$x^{5}+2 x^{3}+2 x^{2}+x+1, x^{3}+x+1 \in \mathbf{F}_{3}[x]$.
(d) Let \mathbf{C}_{1} be the [4,3,2] binary linear code generated by $\left[\begin{array}{llll}1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1\end{array}\right]$ and let \mathbf{C}_{2} be the [4,1,4]- binary linear code generated by [1111]. Let \mathbf{C} be the code obtained through using ($\mathbf{u} \mid \mathbf{u}+\mathrm{v}$) construction on the codes \mathbf{C}_{1} and \mathbf{C}_{2}. Find the generator matrix of \mathbf{C}. Also, give the length and the dimension of \mathbf{C}.
3. (a) Prove that the integers modulo n do not form a field if n is not a prime.
(b) The systematic generator matrix for a $[6,3]$ linear block code is $\left[\begin{array}{lllll}1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1\end{array}\right]$.
Compute the standard array for syndrome decoding.
(c) Check whether the polynomical $x^{3}+x+1 \in \mathbf{F}_{5}$ is primitive. You are given that $x^{30} \equiv x^{2}+1\left(\bmod x^{3}+x+1\right)$. You may assume that the polynomical is irreducible.
4. (a) Find a generator polynomial for a $[13,10]$ BCH code. Use $x^{3}+2 x+2 \in \mathbf{F}_{3}[x]$ as the primitive polynomial for F_{27}, and Table 1. 5
(b) Find the weight distribution of the binary code generated by

$$
G=\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1
\end{array}\right]
$$

Find the weight enumerator polynomial of the code. Also, find the weight enumerator poly-nomial of the dual code.
5. (a) Let \mathbf{C} be the [7,4,2] binary code with the following parity check matrix :

$$
\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

$i \quad \alpha^{i}$
$1 \quad \alpha$
$2 \quad \alpha^{2}$
$3 \quad \alpha+2$
$4 \quad \alpha^{2}+2 \alpha$
$5 \quad 2 \alpha^{2}+\alpha+2$
$6 \quad \alpha^{2}+\alpha+1$
$7 \quad \alpha^{2}+2 \alpha+2$
$8 \quad 2 \alpha^{2}+2$

9	$\alpha+1$
10	$\alpha^{2}+\alpha$
11	$\alpha^{2}+\alpha+2$
12	$\alpha^{2}+2$
13	2
14	2α
15	$2 \alpha^{2}$
16	$2 \alpha^{2}+1$
17	$2 \alpha^{2}+\alpha$
18	$\alpha^{2}+2 \alpha+1$
19	$2 \alpha^{2}+2 \alpha+2$
20	$2 \alpha^{2}+\alpha+1$
21	$\alpha^{2}+1$
22	$2 \alpha+2$
23	$2 \alpha^{2}+2 \alpha$
24	$2 \alpha^{2}+2 \alpha+1$
25	$2 \alpha^{2}+1$

Table 1 : Powers of $a \in \mathbf{F}_{27}$ where $a^{3}+2 a+1=0$
(i) Give the Tanner graph for this code. 3
(ii) List all the codeword's of \mathbf{C} and hence find its minimum distance.
(b) List all the code words of the code \mathbf{C} over Z_{4} generated by

$$
\left[\begin{array}{lllll}
1 & 2 & 3 & 0 & 1 \\
2 & 1 & 0 & 1 & 1
\end{array}\right]
$$

Also find the Lee weight distribution of the code.
6. Which of the following statements are true and which are false ? Justify your answer with short proof or a counter example.
(a) If F is a field and the polynomial $p(x) \in \mathrm{F}[x]$ has no roots in F , then $p(x)$ is irreducible over F .
(b) The code with generator matrix.

$$
\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right]
$$

has a unique codeword of weight three.
(a) A quadratic code of length seven exists over \mathbf{F}_{3}.
(b) The parity check matrix of a turbo code can be the identify matrix.
(e) Every perfect code is self dual.

MMTE-005

