M. SC. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

[M. SC. (MACS)]

Term-End Examination

December, 2023

MMTE-002 : DESIGN AND ANALYSIS OF ALGORITHMS

Time : 2 Hours
Maximum Marks : 50
Note: (i) There are six questions in this paper.
(ii) Question No. 6 is compulsory. Do any four questions from question nos. 1 to 5.
(iii) Calculators are not allowed.

1. (a) If $f: \mathbf{N} \rightarrow \mathbf{R}^{+}$and $g: \mathbf{N} \rightarrow \mathbf{R}^{+}$are two functions, when do we say that $f(n)=\Theta(g(n))$? If $f(n)=\sum_{i=1}^{n} i$, show that $f(n)=\Theta\left(n^{2}\right)$. 3
P. T. 0.
(b) Short the following numbers using insertion sort:

$$
45,23,75,11,22,23,9,74
$$

Show all the steps.
(c) Draw a binary search tree for the following inputs:
$14,15,4,9,7,18,11,16,20$
Also, give the pre-order traversal output for the binary tree you have constructed.
2. (a) Construct a Huffman code for the following data :

Fig. 1
(b) Find the minimum spanning tree of the weighted graph in figure 1 using Prim's algorithm, starting with the vertex e.
3. (a) Find an optimal chain parenthesisation of a matrix chain product whose sequence of dimensions is (30, 40, 6, 20, 8).
(b) Sort the following list of English words in alphabetical order using the Radix Sort Algorithm :

BAR, CAP, ZAP, APE, TAR, DIG, BIT, TAB, ARC, TEA.
4. (a) Illustrate the steps of Rabin-Karp matcher algorithm on the text 294872235748 for the pattern $\mathrm{P}=22$. Assume that you are working with $q=13$. Indicate all the spurious hits.
(b) Show the results of deleting C, P and T, in that order, from the B-tree with minimum degree 3 given in figure 2 :

Fig. 2
P. T. O.
5. (a) Write the steps for multiplication of two polynomials of degree n in $\Theta(n \log n)$ time.
(b) For the following network flow, draw the residual network. Find the augmenting path p and use it to augment the flow : 5

Fig. 3
6. Which of the following statements are true and which are false ? Justify your answer with short proof or a counter-example :
(a) The time complexity to build a heap with n nodes is $\mathrm{O}(\log n)$.
(b) The time complexity of any comparison sorting algorithm is more than the Radix Sort algorithm.
(c) The Dynamic programming approach always gives a better solution to any problem in comparison with the Greedy approach.
(d) The Bellman-Ford algorithm can determine shortest paths in any directed graph.
(e) In any weighted connected graph with three vertices there is a unique minimal spanning tree up to isomorphism.

