M. SC. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) [M. SC. (MACS)]
 Term-End Examination
 December, 2023

MMT-007 : DIFFERENTIAL EQUATIONS AND NUMERICAL SOLUTIONS

Time : 2 Hours
Maximum Marks : 50
Note: (i) Question No. 1 is compulsory.
(ii) Attempt any four questions out of remaining question nos. 2 to 7.
(iii) Use of scientific and non-programmable calculator is allowed.

1. State whether the following statements are true or false. Justify your answer with the help of a short proof or a counter-example. No marks will be awarded without justification : $5 \times 2=10$
(i) Continuity of the function $f(x, y)=\sqrt{|y|}$ is not sufficient for the unique solution of the initial value problem $y^{\prime}=\sqrt{|y|}, y(0)=0$ on the rectangle $|x| \leq 1,|y| \leq 1$.
P. T. 0.
(ii) If inverse Laplace transform is denoted by L^{-1}, then :

$$
\mathrm{L}^{-1}\left[\ln \left(\frac{s+b}{s+a}\right)\right]=\frac{e^{-a t}-e^{-b t}}{t}
$$

(iii) The partial differential equation $u_{x x}+4 x u_{x y}+\left(1-y^{2}\right) u_{y y}=0 \quad$ is elliptic p.d.e., inside the ellipse $4 x^{2}+y^{2}<1$.
(iv) For the boundary value problem :

$$
\begin{gathered}
y^{\prime \prime \prime}(x)=0 \\
y(0)=y(1)=0 \\
y^{\prime}(0)+y^{\prime}(1)=0
\end{gathered}
$$

Green's function exists.
(v) The approximate value of $y(0.6)$ for the initial value problem $y^{\prime}=\sqrt{x+y}, y(0.4)=0.41$ using the second order Runge-Kutta method is 0.61 , where $h=0.2$.
2. (a) Solve, in series, the differential equation :6

$$
x^{2} y^{\prime \prime}+6 x y^{\prime}+\left(6+x^{2}\right) y=0
$$

about $x=0$.
(b) Express $f(x)=x^{4}+3 x^{3}+4 x^{2}-x+2 \quad$ in terms of Legendre polynomials.4
3. (a) Find the Fourier transform of $e^{-9 x^{2}}$. 4
(b) Find the solution of the heat conduction equation subject to the given initial and boundary conditions:

$$
\begin{gathered}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, \quad 0 \leq x \leq 1 \\
u(x, 0)=\sin (\pi x) \text { for } 0 \leq x \leq 1 \\
u(0, t)=0=u(1, t)
\end{gathered}
$$

Using Laasonen method with $\lambda=\frac{1}{6}$ and $h=\frac{1}{3}$. Integrate for two levels.
4. (a) Use Fourier transforms to solve the boundary value problem : 5

$$
\frac{\partial u}{\partial t}=4 \frac{\partial^{2} u}{\partial x^{2}},-\infty<x<\infty, t>0
$$

subject to the conditions :
(i) $u, \frac{\partial u}{\partial x} \rightarrow 0$ as $x \rightarrow \pm \infty$
(ii) $u(x, 0)=f(x)$
(b) Solve the initial value problem $y^{\prime}=x^{2}+y^{2}$, $y(0)=1$, upto $x=0.2$ using third order Taylor series method with $h=0.1$.
5. Find the solution of $\nabla^{2} u=0$ in R subject to the boundary conditions:

$$
\begin{aligned}
& u(x, y)=x^{2}-y^{2} \text { on } x=0, y=0, y=1 \\
& u+\frac{\partial u}{\partial x}=x^{2}+2 x-y^{2} \text { on } x=1
\end{aligned}
$$

where R is the square $0 \leq x \leq 1,0 \leq y \leq 1$, using the five point formula. Use central difference approximation in the boundary condition. Assume uniform step length $h=1 / 2$ along the axes.
6. Solve the boundary value problem :

$$
y^{\prime \prime}-3 y^{\prime}+2 y=2
$$

with

$$
\begin{gathered}
y(0)-y^{\prime}(0)=-1, \\
y(1)+y^{\prime}(1)=1
\end{gathered}
$$

using the second order finite difference method with $h=\frac{1}{2}$.
7. (a) Using the generating function $\mathrm{J}_{n}(x)$, prove that $\mathrm{J}_{n-1}(x)+\mathrm{J}_{n+1}(x)=\frac{2 n}{x} \mathrm{~J}_{n}(x), \quad$ for integer values of n.
(b) Evaluate :

$$
\int_{-1}^{1} \frac{\mathrm{P}_{n}(x)}{\sqrt{1-2 x t+t^{2}}} d x
$$

where $\mathrm{P}_{n}(x)$ is Legendre polynomial.

MMT-007

