No. of Printed Pages : 4

MMT-006

M. Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) [M. Sc. (MACS)]

Term-End Examination

December, 2023

MMT-006 : FUNCTIONAL ANALYSIS

Time : 2 Hours

Maximum Marks : 50

Note: (i) Question No. 1 is compulsory.

(ii) Answer any four questions from Question Nos. 2 to 6.

(iii) Notations are as in the study material.

- 1. State whether the following statements True orFalse ? Justify your answers : $5 \times 2=10$
 - (a) $\|.\|$ defined on \mathbf{R}^n as :

$$||x|| = \sum_{j=1}^{n} |a_j|$$
 for $n = (a_1, a_2, \dots, a_n) \in \mathbf{R}^n$

is a norm.

- [2]
- (b) C_0 is a Banach space.
- (c) If A is the right shift operator on l^2 , then the eigen spectrum is non-empty.
- (d) If a normed space is reflexive, then so is its dual space.
- (e) If a normed linear space X is finite dimesnional, then so is X'.
- 2. (a) Prove that any *two* norms on a finite dimensional normed space are equivalent.3
 - (b) A prove that a Banach space cannot have a denurable basis. 4
 - (c) Define from A : (C [0, 1], $\|.\|_{\infty} \to (C [0, 1], \|.\|_{\infty})$ as :

$$A(f)(t) = \int_0^1 sf(s) ds$$

show that A is a bounded linear operator and calculate $\|\mathbf{A}\|$. 3

- 3. (a) State closed graph theorem and give an example to show that the theorem fails if the Banach space in replaced by a normed linear space.
 - (b) Prove that a normed linear space which is linearly isometric with a reflexive space is ifself reflexive.

- 4. (a) Use Hahn-Banach extension theorem to prove that if x_0 is a non-zero vector in a normed space X, then there exists an $f \in X'$ such that $f(x_0) = ||x_0||$ and $||f_0|| = 1$. 3
 - (b) Show that a subspace Y of a Hilbert space is dense if and only if $Y^{\perp} = \{0\}$. 4
 - (c) Let X be a normed linear space and $p: X \rightarrow X$ be a projection. If p is closed, then show that $R \subset p$ and Z (p) are closed.

3

- 5. (a) Let Y be a closed subspace of a normed linear space X. If both Y and X/Y are Banach spaces, then show that X is complete.
 - (b) Prove that the sequence $\{u_n\}$ in l^2 defined as $u_n = (0, U, \dots, 1, 0, 0, \dots)$, where 1 occurs at the *n*th place is an orthonormal basis for l^2 .
 - (c) If f is a bounded linear functional on a Hilbert space H, show that there is a unique $y \in H$ such that $f(x) = \langle x, y \rangle$ for all $x \in H$.

P. T. O.

- 6. (a) Give an example of a compact linear map on l^2 . 3
 - (b) Let $\frac{1}{p} + \frac{1}{q} = 1$. If $f \in L^p([0,1])$, then show that it defines a bounded linear functional on L^q ([0, 1]). 5
 - (c) Give an example of a postive operator on $(\mathbb{C}^n, \|.\|_2)$. 2

[4]

MMT-006