No. of Printed Pages : 4

MMT-004

M. Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER

SCIENCE) [M. Sc. (MACS)]

Term-End Examination

December, 2023

MMT-004 : REAL ANALYSIS

Time : 2 Hours

Maximum Marks : 50

- *Note* : (*i*) *Question No.* **1** *is compulsory.*
 - (ii) Attempt any four questions from Q. Nos. 2 to 6.
 - (iii) Calculator is not allowed.
 - (iv) Notations as in the study material.
- 1. State whether the following statements are True *or* False. Give reasons for your answers :

 $5 \times 2 = 10$

(a) If X is any non-empty set and d_1 is any metric and d_2 discrete metric on X, then any function $f:(X,d_1) \rightarrow (X,d_2)$ is continuous.

P. T. O.

(b) If (X, d) be a metric space and $x \in X$, $E \subset X$, then $x \in \overline{E}$ implies that d(x, E) = 0.

(c)
$$\{0\} \cup \{\frac{1}{n}, n = 1, 2, 3,\}$$
 is compact in **R**.

- (d) The function f(x, y) = xy 1 can be solved for x in term of y near 0.
- (e) Every L⁻¹-function on [0, 1] is also an L²function on [0, 1].
- 2. (a) Define the diameter of a set. Find the diameter of the following subset of \mathbf{R} : 2

$$\mathbf{A} = \left\{-\frac{3}{2}, -1, 0, 2, 5, 7\right\}$$

(b) Show that the points (1, 1, 1) and (-1, -1, -1) are the only stationary points of the function $f : \mathbb{R}^3 \to \mathbb{R}$ given by :

$$f(x, y, z) = (x + y + z)^{3} - 3(x + y + z) - 24xyz$$

Check whether the function has maximum or minimum at these points. 4

(c) If A and B are two measurable sets, show that A \cup B is also measurable. Find the relation $m(A \cup B), m(A)$ and m(B). 4

[2]

- 3. (a) (X, d_1) and (Y, d_2) are metric spaces and $f: X \to Y$ is continuous at a point $c \in X$. Prove that given any open set V containing f(c) there exists an open set u containing c in X such that $f(u) \subset V$.
 - (b) Find the directional derivative of the function $f : \mathbf{R}^4 \to \mathbf{R}^4$ defined by :

$$f(x, y, z, w) = (x^2y, xyz, x^2 + y^2, zw^2)$$

at the point (1, 2, -1, -2) in the direction v = (1, 0, -2, 2).

(c) Suppose *f* is a simple measurable function defined on a measurable set E in **R**. Define $\int_{E} f dm$. If $a \le f(x) \le b$ for all $x \in E$, prove that : 4

$$am(\mathbf{E}) \leq \int_{\mathbf{E}} f dm \leq bm(\mathbf{E})$$

- 4. (a) State Cantor's Intersection theorem. Prove that the theorem fails for incomplete metric space. 4
 - (b) Find the derivative of $f : \mathbf{R}^2 \to \mathbf{R}^2$ defined by :

$$f(x,y) = (x^2 - y, x + 2y)$$

at the point (2, 3).

3

- (c) State Fatou's lemma. Give an example of a sequence of measurable function for which strict inequality holds in Fatou's lemma. 3
- 5. (a) Show that a compact subset of a metric space is bounded. Is the coverse true ? Justify your answer. 3
 - (b) State Monotone Convergence Theorem. Verify it for the sequence $f_n = X_{[n,n+1]}$, $n = 1, 2, 3, \dots 3$
 - (c) For a sequence of non-negative measurable functions $\{f_n\}$ on a measurable set E, prove that : 4

$$\int_{\mathbf{E}}\sum_{n=1}^{\infty}f_{n}dm=\sum_{n=1}^{\infty}\int_{\mathbf{E}}f_{n}dm$$

- 6. (a) Show that a metric space X is connected if and only if every continuous function f on X to discrete metric space {1, -1} is a constant function.
 - (b) Find the critical points of $f(x, y, z) = x^2y^2 + z^2 + 2x 4y + 2z$ and classify them. 4
 - (c) Define the Fourier series for a function $f \in L_1^r[-\pi,\pi]$. Prove that the Fourier series for the function $f(t) = t^2$ on $[-\pi,\pi]$ is $\frac{\pi^2}{3} + 4\sum_{n \in \mathbb{N}} \frac{(-1)^n \cos nt}{n^2}$. 3

MMT-004