M. Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) [M. Sc. (MACS)]
 Term-End Examination
 December, 2023
 MMT-003 : ALGEBRA

Time : 2 Hours
Maximum Marks : 50
Note : Question No. 1 is compulsory. Answer any four questions from \boldsymbol{Q}. Nos. 2. to 6. Calculators are not allowed. Show all the steps involved.

1. Which of the following statements are true and which are false ? Justify your answer with a short proof or a counter-example :
(i) The rings $\frac{\mathbf{R}[x]}{\left\langle x^{2}+1\right\rangle}$ and $\mathbf{R} \times \mathbf{R}$ are isomorphic.
(ii) If L and K are finite extensions of a field $\mathrm{F} \subseteq \mathbf{C}$, then $[\mathrm{KL}: \mathrm{F}]=[\mathrm{L}: \mathrm{F}][\mathrm{K}: \mathrm{F}]$.
P. T. O.
(iii) If $r, s \in \mathbf{N}, r, s>1$, then $\mathrm{S}_{r s}$ has an element of order $r+s$.
(iv) Every free abelian group is a free group.
(v) For any finite group G and $g \in \mathrm{G}, \mathrm{o}(g)=|\mathrm{Z}(g)|$.
2. (a) Must a group of order 30 contain an element of order 15 ? Give reasons for your answer. 8
(b) If $\mathbf{F}_{2}{ }^{4}$ a field extension of $\mathbf{F}_{2}{ }^{3}$? Justify your answer.
3. (a) Let K be a Galois extension of a field F , with Galois group $G(K / F)$ isomorphic to S_{3}. How many fields L will be there such that $\mathrm{F} \underset{+}{\subset} \mathrm{L} \subset \mathrm{K}$? How many such L will be normal extensions of F ? Justify your answers. 4
(b) Show that the ring $\mathbf{Z}[\sqrt{-11}]$ is not a Euclidean domain.
4. (a) Determine all the possible abelian groups, upto isomorphism, of order 1400.
(b) Consider an action of the quaternion group on a set with 11 elements. Show that this action has at least one fixed point. 3
(c) Compute the Legendre symbol $\left(\frac{63}{41}\right)$.
5. (a) Show that $\mathrm{SL}_{2}(\mathbf{Z}) \cap \mathrm{SO}_{2}(\mathbf{R})$ is a cyclic group of order 4 .
(b) Find the splitting field of $x^{12}+\mathrm{T}$ in $\mathbf{Z}_{5}[x]$, over \mathbf{Z}_{5}. Also find its degree over \mathbf{Z}_{5}.
6. (a) Give an example, with justification, of a ring R and a prime ideal I of R which is not maximal in R.

2
(b) Write $\mathrm{A}=\left[\begin{array}{ccc}1 & 0 & 1 \\ 1 & -1 & -1 \\ 0 & 2 & 1\end{array}\right]$ as a product of elements of $\mathrm{O}_{3}(\mathbf{R})$ and $\mathrm{B}_{3}(\mathbf{R})$.
(c) Find a permutation group isomorphic to \mathbf{Z}_{4}.

