No. of Printed Pages : 3

MMT-003

M. Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) [M. Sc. (MACS)] Term-End Examination December, 2023

MMT-003 : ALGEBRA

Time : 2 Hours

Maximum Marks : 50

Note: Question No. 1 is compulsory. Answer any four questions from Q. Nos. 2. to 6.
Calculators are not allowed. Show all the steps involved.

- Which of the following statements are true and which are false ? Justify your answer with a short proof or a counter-example : 10
 - (i) The rings $\frac{\mathbf{R}[x]}{\langle x^2+1\rangle}$ and $\mathbf{R} \times \mathbf{R}$ are

isomorphic.

(ii) If L and K are finite extensions of a field $F \subseteq C$, then [KL : F] = [L : F] [K : F].

P. T. O.

- (iii) If $r, s \in \mathbf{N}$, r, s > 1, then S_{rs} has an element of order r+s.
- (iv) Every free abelian group is a free group.
- (v) For any finite group G and $g \in G, o(g) = |Z(g)|.$
- 2. (a) Must a group of order 30 contain an element of order 15 ? Give reasons for your answer.
 8
 - (b) If \mathbf{F}_{2^4} a field extension of \mathbf{F}_{2^3} ? Justify your answer. 2
- 3. (a) Let K be a Galois extension of a field F, with Galois group G (K/F) isomorphic to S₃. How many fields L will be there such that F ⊂L⊂K ? How many such L will be normal extensions of F ? Justify your answers.
 - (b) Show that the ring Z $[\sqrt{-11}]$ is not a Euclidean domain. 6
- 4. (a) Determine all the possible abelian groups, upto isomorphism, of order 1400. 4

(c) Compute the Legendre symbol
$$\left(\frac{63}{41}\right)$$
. 3

5. (a) Show that
$$SL_2$$
 (**Z**) \cap SO₂ (**R**) is a cyclic group of order 4. 3

- (b) Find the splitting field of $x^{12} + T$ in \mathbb{Z}_5 [x], over \mathbb{Z}_5 . Also find its degree over \mathbb{Z}_5 . 7
- 6. (a) Give an example, with justification, of a ring R and a prime ideal I of R which is not maximal in R.2

(b) Write A =
$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & -1 & -1 \\ 0 & 2 & 1 \end{bmatrix}$$
 as a product of

elements of O_3 (**R**) and B_3 (**R**). 5

(c) Find a permutation group isomorphic to \mathbf{Z}_4 .

3

MMT-003