BACHELOR OF SCIENCE (B. SC.)
 Term-End Examination
 December, 2023
 Physics

 PHE-13 : PHYSICS OF SOLIDS

 PHE-13 : PHYSICS OF SOLIDS}

Time : 2 Hours
Maximum Marks : 50
Note: (i) All questions are compulsory. However, internal choices are given.
(ii) You may use a calculator.
(iii) Symbols have their usual meanings.
(iv) The values of physical constants are given at the end.

1. Attempt any five parts:
$3 \times 5=15$
(a) Write down the symmetries observed in an ammonia molecule.
(b) A crystal plane intersects the three axes along the basis vectors $\overrightarrow{a_{1}}, \overrightarrow{a_{2}}$ and $\overrightarrow{a_{3}}$ at $2 a_{1}, 3 a_{2}$ and $4 a_{3}$ respectively. Calculate the Miller indices of the plane and the interplanar distance between a family of such planes if the lattice constant is $4.0 \AA$.
P. T. O.
(c) The potential energy function of a crystal is given by :

$$
\mu(r)=\frac{-\mathrm{A} e^{2}}{4 \pi \varepsilon_{0} r}+\frac{\mathrm{B}}{r^{n}}
$$

Determine the intermolecular distance at which the potential energy is minimum.
(d) Write down the relation between the angular frequency ω and the wave number k for the longitudinal wave in a linear chain of identical atoms separated by a distance a. Calculate the group velocity and phase velocity for $k a \ll 1$.
(e) Calculate the probability that an electron in a metal will occupy an energy level with energy $\mathrm{E}=\mathrm{E}_{\mathrm{F}}+3 k_{\mathrm{B}} \mathrm{T}$ at a temperature T , where E_{F} is the Fermi energy.
(f) What are Type I and Type II superconductors?
(g) Ni^{2+} and Fe^{2+} are transition metals with the same valency. Will the magnetic moment of their ferrites be same or different? Justify your answer.
(h) What is the difference between peizoelectric and pyroelectric materials ? Give one example of each.

2. Answer any two parts :

(a) Define atomic packing fraction. Determine the atomic packing fraction of a body centred cubic lattice. $\quad 1+4$
(b) The primitive translation vectors of a direct lattice are :

$$
\begin{gathered}
\overrightarrow{a_{1}}=a \hat{i}+\frac{a}{8} \hat{j} \\
\overrightarrow{a_{2}}=-a \hat{i}+\frac{a}{8} \hat{j} \\
\overrightarrow{a_{3}}=c \hat{k}
\end{gathered}
$$

Calculate : (i) the volume of the primitive cell and (ii) the primitive translation vectors of a reciprocal lattice.
(c) Determine the condition governing geometric structure factor for the body centred cubic lattice and list 2 missing planes.
3. Answer any one part : $5 \times 1=5$
(a) Derive an expression for the heat capacity of a solid on the basis of Einstein's theory.
(b) List the different types of bonding in solids. Describe any two in detail.
4. Answer any two parts :
(a) Describe the set up for the Hall effect experiment and derive an expression for the Hall coefficient.
(b) A germanium specimen is kept at absolute zero temperature. Calculate the intrinsic Fermi level if the band gap is 0.74 eV . If the temperature is raised to 300 K , what will be the change in the Fermi energy ? Take the effective mass of electron and hole to be $0.56 m_{e}$ and $0.29 m_{e}$ respectively.
(c) State the limitations of the Drude-Lorentz theory. What are the fundamental assumptions on which the Sommerfeld model is based?
5. Answer any two parts :
(a) With the help of a schematic diagram, explain the float zone technique of crystal growth.
(b) What is a liquid crystal ? Explain the structure of a liquid crystal display. $2+3$
(c) With the help of a suitable diagram, explain the construction and working of a solar cell.

Physical Constants :

$$
\begin{aligned}
& h=6.62 \times 10^{-34} \mathrm{Js} \\
& \mathrm{~N}_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1} \\
& e=1.6 \times 10^{-19} \mathrm{C} \\
& k_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{JK}^{-1} \\
& m_{e}=9.1 \times 10^{-31} \mathrm{~kg}
\end{aligned}
$$

PHE-13

विज्ञान स्नातक (बी. एस-सी.) सत्रांत परीक्षा
दिसम्बर, 2023 भौतिक विज्ञान

पी.एच.ई.-13 : घन अवस्था भौतिकी

समय : 2 घण्टे
अधिकतम अंक : 50
नोट : (i) सभी प्रश्न अनिवार्य हैं, किन्तु आन्तरिक विकल्प दिए गए हैं।
(ii) आप कैलकुलेटर का प्रयोग कर सकते हैं।
(iii) प्रतीकों के अपने सामान्य अर्थ हैं।
(iv) भौतिक नियतांकों के मान अंत में दिये गये हैं।

1. किन्हीं पाँच भागों के उत्तर दीजिए : $3 \times 5=15$
(क) अमोनिया में प्रेक्षित सममितियाँ लिखिए।
(ख) एक क्रिस्टल समतल, बेसिस सदिशों $\overrightarrow{a_{1}}, \overrightarrow{a_{2}}$ और $\overrightarrow{a_{3}}$ के अनुदिश तीन अक्षों को क्रमश: $2 a_{1}, 3 a_{2}$ और $4 a_{3}$ पर विच्छेदित करता है। इस

समतल के मिलर सूचकांक और ऐसे एक समतल समूह में अन्तरातलोय दूरी परिकलित कीजिए, यदि दिया गया हो कि जालक स्थिरांक $4.0 \AA$ है।
(ग) किसी क्रिस्टल के स्थितिज ऊर्जा फलन का व्यंजक निम्नलिखित है :

$$
\mu(r)=\frac{-\mathrm{A} e^{2}}{4 \pi \varepsilon_{0} r}+\frac{\mathrm{B}}{r^{n}}
$$

अंतरा-अणुक दूरी निर्धारित कीजिए जिसके लिए स्थितिज ऊर्जा का मान न्यूनतम हो।
(घ) एक-दूसरे से दूरी a पर स्थित एक ही प्रकार के परमाणुओं की रैखीय शृंखला में संचरित अनुदैर्घ्य तरंग के लिए कोणीय आवृत्ति ω और तरंग संख्या k के बीच सम्बन्ध लिखिए। $k a \ll 1$ के लिए समूह वेग और प्रावस्था वेग परिकलित कीजिए।
(ङ) धातु में किसी इलेक्ट्रॉन के, तापमान T पर, ऊर्जा $\mathrm{E}=\mathrm{E}_{\mathrm{F}}+3 k_{\mathrm{B}} \mathrm{T}$ वाले ऊर्जा स्तर में समायोजित होने की प्रायिकता परिकलित कीजिए। दिया गया है कि EF_{F} फर्मी ऊर्जा है।
(च) प्ररूप I और प्ररूप II अतिचालक क्या होते हैं ?
P. T. 0.
(छ) Ni^{2+} और Fe^{2+} दोनों ही समान संयोजकता वाले संक्रमण धातु हैं। उनके फेराइटों के चुम्बकीय आघूर्ण समान होंगे या भिन्न हांगे ? अपने उत्तर का कारण बताइए।
(ज) दाब विद्युत् और ताप विद्युत् पदार्थों में क्या अन्तर हैं ? प्रत्येक का एक उदाहरण दीजिए।
2. किन्हीं दो भागों के उत्तर दीजिए : $5 \times 2=10$
(क) परमाण्वीय संकुलन गुणांक की परिभाषा दीजिए। एक अन्तःकेन्द्रित घनीय जालक के लिए परमाण्वीय संकुलन गुणांक निर्धारित कीजिए। $1+4$
(ख) एक सामान्य जालक के अभाज्य स्थानान्तरण सदिश निम्नलिखित हैं :

$$
\begin{gathered}
\overrightarrow{a_{1}}=a \hat{i}+\frac{a}{8} \hat{j} \\
\overrightarrow{a_{2}}=-a \hat{i}+\frac{a}{8} \hat{j} \\
\overrightarrow{a_{3}}=c \hat{k}
\end{gathered}
$$

इस जालक के (i) अभाज्य एकक कोष्ठिका का आयतन और (ii) व्युत्क्रम जालक के अभाज्य स्थानान्तरण सदिश निर्धारित कीजिए। $2+3$
(ग) अन्तःकेन्द्रित घनीय जालक के लिए ज्यामितीय संरचना गुणक निर्धारित करने वाले प्रतिबन्ध व्युत्पन्न कीजिए और दो लुप्त समतलों को सूचीबद्ध कीजिए। $4+1$
3. कोई एक भाग कीजिए : $5 \times 1=5$
(क) आइन्सटीन सिद्धान्त के आधार पर एक ठोस के ऊष्मा-धारिता का व्यंजक व्युत्पन्न कीजिए। 5
(ख) ठोस में विभिन्न प्रकार के आबन्धनों को सूचीबद्ध कीजिए। किन्हीं दो प्रकार के आबंधनों को विस्तार से समझाइए। $2+3$
4. कोई दो भाग कीजिए :
$5 \times 2=10$
(क) हाल प्रभाव प्रयोग की व्यवस्था का विवरण कीजिए और हाल नियतांक का व्यंजक व्युत्पन्न कीजिए। $2+3$
(ख) जर्मेनियम के एक प्रतिदर्श को परम शून्य तापमान पर रखा जाता है। यदि ऊर्जा अन्तराल 0.74 eV हो, तो नैज फर्मी स्तर परिकलित कीजिए। यदि तापमान को 300 K तक बढ़ा दिया जाए, तो फर्मी ऊर्जा में कितना बदलाव होगा ? इलेक्ट्रॉन और होल के प्रभावी द्रव्यमान क्रमशः $0.56 m_{e}$ और $0.29 m_{e}$ लीजिए। $1+4$
P. T. 0.
(ग) ड्रडे-लोरेन्ट्स सिद्धान्त की कमियाँ बताइए। सोमरफैल्ड मॉडल किन मूल अभिगृहितों पर आधारित हैं ? बताइए। $3+2$
5. कोई दो भाग कीजिए :
$5 \times 2=10$
(क) व्यवस्था चित्र की सहायता से, क्रिस्टल वृद्धि की प्लवी जोन तकनीक समझाइए। 5
(ख) द्रव-क्रिस्टल क्या होता है ? एक द्रव-क्रिस्टल प्रदर्श की संरचना समझाइए। $2+3$
(ग) उचित आरेख की सहायता से, एक सौर सेल की रचना और कार्यविधि समझाइए।

भौतिक नियतांक :

$$
\begin{aligned}
& h=6.62 \times 10^{-34} \mathrm{JS}^{2} \\
& \mathrm{~N}_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1} \\
& e=1.6 \times 10^{-19} \mathrm{C} \\
& k_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{JK}^{-1} \\
& m_{e}=9.1 \times 10^{-31} \mathrm{~kg}
\end{aligned}
$$

