BACHELOR'S DEGREE PROGRAMME
 (BDP)

Term-End Examination
 December, 2023 MTE-10 : NUMERICAL ANALYSIS

Time : 2 Hours
Maximum Marks : 50

Note: (i) Attempt any five questions.
(ii) All computations may be done upto 3 decimal places.
(iii) Use of calculators is not allowed.
(iv) Symbols have their usual meanings.

1. (a) Solve the system of equations:

$$
\begin{gathered}
4 x+y+z=4 \\
x+4 y-2 z=4 \\
3 x+2 y-4 z=6
\end{gathered}
$$

using LU decomposition method. Take U with diagonal elements as 1 .
P. T. 0.
(b) Locate the smallest positive real root of the equation $x^{2}-x-1=0$ in an interval of unit length. Taking the end points of this interval as the initial approximation x_{0}, x_{1}, perform two iterations using Regula-Falsi method. 4
2. (a) Obtain an approximate value of $y(1.2)$ using the Taylor's series method of order three for the initial value problem : 4 $y^{\prime}=x-y^{2}, y(1)=2$ with $h=0.2$
(b) The equation $x^{2}+a x+b=0$ has two real roots p and q such that $|p|<|q|$. If we use the fixed point iteration $x_{k+1}=\frac{-b}{x_{k}+a}$ to find a root, then to which root does it converge?
(c) Show by induction that:

$$
\Delta^{n}\left(e^{x}\right)=\left(e^{h}-1\right)^{n} e^{x},
$$

where Δ is the forward difference operator and $h=x_{1}-x_{0}$.
3. (a) Using Lagrange interpolation, find the approximate value of $f(1)$ from the following data : 4

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-3	-29
-1	-1
0	1
2	11

(b) The solution of the system of equations $\left(\begin{array}{ll}1 & 4 \\ 6 & 2\end{array}\right)\binom{x}{y}=\binom{5}{8}$ is attempted by the
Gauss-Jacobi and Gauss-Seidel iteration schemes. Set up the two schemes in the matrix form. Will the iteration schemes converge? Justify your answer.
4. (a) Determine the value of h for the function $f(x)=(2+x)^{4}, 1 \leq x \leq 2$ with equally spaced nodal points, so that the quadratic interpolation satisfies \mid error $\mid \leq 10^{-6}$. 3
(b) Evaluate the integral $\mathrm{I}=\int_{0}^{1} \frac{d x}{3+2 x}$ using the Trapezoidal rule with 2 and 4 subintervals. Determine the minimum number of subintervals required if the error in magnitude is less than 0.002 . 7
P. T. 0.
5. (a) Locate the negative real root of smallest magnitude in an interval of unit length of the equation $3 x^{3}+8 x^{2}+8 x+5=0$. Taking the mid-point of this interval as the initial approximation iterate twice using the Birge-Vieta method.
(b) Using the Runge-Kutta fourth order method with $h=0.2$, find an approximate value of $y(0.2)$ for the initial value problem : 4

$$
y^{\prime}=x^{2}+y^{2}, \quad y(0)=1
$$

6. (a) Estimate the eigen values of the matrix :

$$
\left(\begin{array}{rrr}
1 & 2 & -1 \\
1 & 1 & 1 \\
1 & 3 & -1
\end{array}\right)
$$

using the Gerschgorin bound. Draw a rough sketch of the region where the eigen values lie.
(b) The following data values for finding an approximation to $f^{\prime \prime}(0.3)$ are given :

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
0.1	0.091
0.2	0.155
0.3	0.182
0.4	0.171
0.5	0.130

Using the central difference formula of $\mathrm{O}\left(h^{2}\right)$, find an approximation to $f^{\prime \prime}(0.3)$ with $h=0.2$ and $h=0.1$. Hence find an improved estimate using extrapolation.
7. (a) Obtain the unique polynomial $\mathrm{P}(x)$ of degree 3 or less corresponding to a function $f(x)$, where $f(0)=1, f^{\prime}(0)=2, f(1)=5, f^{\prime}(1)=4 . \quad 4$
(b) Solve $\frac{d y}{d x}=\frac{y-x}{y+x}$ with $y(0)=1$ using Euler's method in the interval $[0,0.04]$ by dividing the interval into 2 subintervals. 3
(c) Using synthetic division, find $f^{\prime}(3)$ where

$$
f(x)=x^{5}-3 x^{4}+2 x^{2}-1 .
$$

स्नातक उपाधि कार्यक्रम (बी. डी. पी.)

सत्रांत परीक्षा

दिसम्बर, 2023

एम.टी.ई.-10 : संख्यात्मक विश्लेषण
समय : 2 घण्टे

नोट : (i) कोई पाँच प्रश्न हल कीजिए।
(ii) सारी गणनाएँ दशमलव के 3 स्थानों तक की जा सकती है।
(iii) कैल्कुलेटरों के प्रयोग की अनुमति नहीं है।
(iv) प्रतीकों के अपने सामान्य अर्थ हैं।

1. (क) समीकरण निकाय :

$$
\begin{gathered}
4 x+y+z=4 \\
x+4 y-2 z=4 \\
3 x+2 y-4 z=6
\end{gathered}
$$

को $L U$ वियोजन विधि से हल कीजिए। U के विकर्ण अवयव 1 लीजिए।
(ख) एक इकाई अन्तराल में समीकरण $x^{2}-x-1=0$ का न्यूनतम धनात्मक वास्तविक मूल ज्ञात कीजिए। इस अन्तराल के अन्त्य बिन्दुओं को प्रारम्भिक सन्निकटन x_{0}, x_{1} मानकर रेगुला-फाल्सी विधि की दो पुनरावृत्तियाँ दीजिए। 4
2. (क) तृतीय कोटि की टेलर श्रेणी विधि का प्रयोग करके आदिमान समस्या :

$$
y^{\prime}=x-y^{2}, y(1)=2, h=0.2
$$

के लिए $y(1.2)$ का मान आकलित कीजिए। 4
(ख) समीकरण $x^{2}+a x+b=0$ के दो वास्तविक मूल p और q इस प्रकार हैं कि $|p|<|q|$ है। यदि हम नियत बिन्दु पुनरावृत्ति $x_{k+1}=\frac{-b}{x_{k}+a}$ का प्रयोग करके एक मूल ज्ञात करें, तो किस मूल पर यह विधि अभिसरित होगी ? 4
(ग) आगमन द्वारा सिद्ध कीजिए कि :

$$
\Delta^{n}\left(e^{x}\right)=\left(e^{h}-1\right)^{n} e^{x}
$$

जहाँ Δ अग्रांतर संकारक है और $h=x_{1}-x_{0}$ है।
3. (क) लग्रांज अन्तर्वेशन का प्रयोग करके निम्नलिखित आंकड़ों से $f(1)$ का सन्निकट मान ज्ञात कीजिए : 4

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-3	-29
-1	-1
0	1
2	11

(ख) समीकरण निकाय को हल $\left(\begin{array}{ll}1 & 4 \\ 6 & 2\end{array}\right)\binom{x}{y}=\binom{5}{8}$
को हल करने के लिए गाउस-जेकोबी और गाउस-सीडल पुनरावृत्ति विधियों का प्रयोग किया जाता है। दोनों विधियों को आव्यूह रूप में लिखिए। क्या ये पुनरावृत्ति विधियाँ अभिसरित करेंगी ? अपने उत्तर की पुष्टि कीजिए।
4. (क) समदूरस्थ निस्पंदों के साथ फलन $f(x)=(2+x)^{4}, 1 \leq x \leq 2$ के लिए h का वह मान ज्ञात कीजिए जिससे द्विघातीय अन्तर्वेशन में त्रुटि का परिमाप अधिकतम 10^{-6} हो।
(ख) 2 और 4 उप-अन्तराल लेकर समलंबी नियम से समाकल $\mathrm{I}=\int_{0}^{1} \frac{d x}{3+2 x}$ का मान ज्ञात कीजिए। यदि त्रुटि का परिमाप 0.002 से कम हो, तो उपअन्तरालों की न्यूनतम संख्या ज्ञात कीजिए। 7
5. (क) समीकरण $3 x^{3}+8 x^{2}+8 x+5=0$ का एक इकाई अन्तराल में न्यूनतम परिमाण वाला एक ऋण मूल ज्ञात कीजिए। इस अन्तराल के मध्य बिन्दु को प्रारम्भिक सन्निकटन मानकर बर्ज-विएटा विधि की दो पुनरावृत्तियाँ दीजिए। 6
(ख) $h=0.2$ के साथ, चतुर्थ कोटि रुंगे-कुट्टा विधि का प्रयोग करके आदिमान समस्या :

$$
y^{\prime}=x^{2}+y^{2}, \quad y(0)=1
$$

के लिए $y(0.2)$ का सन्निकट मान ज्ञात कीजिए।
6. (क) गर्शगोरिन परिबंधों के प्रयोग से आव्यूह :

$$
\left(\begin{array}{rrr}
1 & 2 & -1 \\
1 & 1 & 1 \\
1 & 3 & -1
\end{array}\right)
$$

के आइगेन मान आकलित कीजिए। आइगेन मानों को आविष्ट करने वाले क्षेत्र का एक स्थूल आरेख बनाइए।
P. T. O.
(ख) $f^{\prime \prime}(0.3)$ के सन्निकटन के लिए निम्नलिखित आँकड़े दिए गए हैं :

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
0.1	0.091
0.2	0.155
0.3	0.182
0.4	0.171
0.5	0.130

$\mathrm{O}\left(h^{2}\right)$ के केन्द्रीय अन्तर सूत्र का प्रयोग करके
$h=0.2$ और $h=0.1$ के साथ $f^{\prime \prime}(0.3)$ के सन्निकट ज्ञात कीजिए। इस प्रकार, बहिर्वेशन से एक संशोधित आकलन ज्ञात कीजिए। 5
7. (क) एक फलन $f(x)$ जहाँ $f(0)=1$, $f^{\prime}(0)=2, f(1)=5, f^{\prime}(1)=4$ है, के संगत घात 3 या कम वाला अद्वितीय बहुपद $\mathrm{P}(x)$ ज्ञात कीजिए।

4
(ख) अन्तराल $[0,0.04]$ को दो उप-अन्तरालों में विभाजित करके, ऑयलर विधि से $y(0)=1$ के साथ $\frac{d y}{d x}=\frac{y-x}{y+x}$ को हल कीजिए।
(ग) संश्लेषित विभाजन से $f^{\prime}(3)$ ज्ञात कीजिए, जहाँ

$$
f(x)=x^{5}-3 x^{4}+2 x^{2}-1 \text { हो। } 3
$$

