# BACHELOR'S DEGREE PROGRAMME (BDP) 

Term-End Examination
December, 2023 ELECTIVE COURSE : MATHEMATICS MTE-09 : REAL ANALYSIS

Time : 2 Hours
Maximum Marks : 50
Weightage : 70\%
Note : Attempt five questions in all. Q. No. 1 is compulsory. Answer any four questions from Question Nos. 2 to 7.

1. State the following statements are true or false ? Give reasons for your answers: 2 each
(i) The function $f$ defined on $[5,6]$ by :

$$
f(x)=\left\{\begin{aligned}
1, & \text { when } x \text { is rational } \\
-1, & \text { when } x \text { is irrational }
\end{aligned}\right.
$$

is integrable.
(ii) -2 is a limit point of the interval $[-3,2]$.
(iii) The function $f:[1,50] \rightarrow \mathbf{R}$ defined by $f(x)=20-[x] \quad([x] \equiv$ greatest integer function) is continuous.
(iv) $\sum(-1)^{n} \frac{2}{n}$ is a convergent series.
P. T. O.
(v) For the function $f(x)=x^{3}-4 x^{2}+5 x-2$, there exists a point $c \in] 1,2[$ such that $f^{\prime}(c)=0$.
2. (a) Prove that between any two real roots of the equation, $3 \cos x=e^{-3 x}$, there is at least one real root of the equation $e^{3 x} \sin x=1$.
(b) Check whether the intervals [7, 11 [ and ] 2,6 ] are equivalent or not.
(c) Prove that every absolutely convergent series is convergent. Is the converse of this statement true? Justify your answer.
3. (a) Find the limit as $n \rightarrow \infty$ of the sum :

$$
\begin{aligned}
\frac{1}{n}\left[\sin \left(\frac{\pi}{n}\right)+\sin \left(\frac{2 \pi}{n}\right)+\sin \left(\frac{3 \pi}{n}\right)\right. & +\ldots . . \\
& \left.+\sin \left(\frac{3 x \pi}{n}\right)\right]
\end{aligned}
$$

(b) Show that the function $f:]-1,1[\rightarrow \mathbf{R}$ given by $f(x)=x^{4}$ is uniformly continuous on its domain. Hence deduce that it is continuous at $x=0$.
(c) Write the inequality $3 \leq 4 x-2 \leq 5$ in the modulus form. 2
4. (a) Find:

$$
\lim _{x \rightarrow-3} \frac{2}{(x+3)^{2}}
$$

(b) Prove that for $x \in] 0,1[$ :

$$
x<-\log (1-x)<\frac{x}{1-x}
$$

(c) Let $f:[0,1] \rightarrow \mathbf{R}$ be a function defined by $f(x)=4 x+1$.
Let:

$$
\mathrm{P}_{1}=\left\{0, \frac{1}{2}, \frac{2}{3}, 1\right\} \text { and } \mathrm{P}_{2}=\left\{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\right\}
$$

be two partitions of the interval [0, 1]. Prove or disprove :

$$
\mathrm{L}\left(\mathrm{P}_{2}, f\right) \leq \mathrm{U}\left(\mathrm{P}_{1}, f\right)
$$

5. (a) Let a function $f$ be defined by :

$$
f(x)=\left\{\begin{array}{cc}
x^{2}+1, & -\infty<x \leq 1 \\
\frac{3 x^{2}-2}{x}, & 1<x \leq 2 \\
2 x-1, & 2<x<\infty
\end{array}\right.
$$

Discuss the continuity of $f$ at $x=1,2$.
(b) Let $\phi \subset \mathrm{S} \subset \mathbf{R}$ and $u$ be an upper bound of S. Show that $u$ is supremum of $S^{\prime}$ if and
P. T. O.
only if $\forall \varepsilon>0$, there exists an $s_{\varepsilon} \in \mathrm{S}^{\prime}$ such that $s_{\varepsilon}>u-\varepsilon$.
(c) Test the convergence of the series:

$$
\sum_{n=1}^{\infty}\left[\sqrt{n^{3}+1}-\sqrt{n^{3}-1}\right]
$$

6. (a) Show that the sequence $\left\{f_{n}\right\}$, where:

$$
f_{n}(x)=\frac{x}{1+n x^{2}}, x \in[1, \infty[
$$

is uniformly convergent in it.
(b) Give an example to show that intersection of an infinite number of open sets need not be an open set.
(c) Check whether the function $f:[1,2] \rightarrow \mathbf{R}$ defined by $f(x)=x-e^{-x}$ is one-one or not. Is it onto also ? Justify your answer.
7. (a) By showing that the remainder after $n$-terms tends to zero, find the Maclaurin's series expansion of $\cos 3 x$.
(b) Test the following series for convergence : 4

$$
\frac{1}{5}+\frac{1.4}{5.8} x+\frac{1.4 .7}{5.8 .11} x^{2}+\ldots \ldots \infty(x>0)
$$

(c) Evaluate:

$$
\lim _{x \rightarrow 0} \frac{1-\cos 2 x}{e^{2 x}-1}
$$

P. T. O.

## MTE-09

स्नातक उपाधि कार्यक्रम (बी. डी. पी.)
सत्रांत परीक्षा
दिसम्बर, 2023
ऐच्छिक पाठ्यक्रम : गणित
एम.टी.ई.-09 : वास्तविक विश्लेषण
समय : 2 घण्टे
अधिकतम अंक : 50 भारिता : $70 \%$

नोट : कुल पाँच प्रश्नों के उत्तर दीजिए। प्र. सं. 1 अनिवार्य है। प्र. सं. 2 से 7 तक किन्हीं चार प्रश्नों के उत्तर दीजिए।

1. बताइए कि निम्नलिखित कथन सत्य हैं या असत्य ? अपने उत्तरों के कारण दीजिए : प्रत्येक 2
(i) $f(x)=\left\{\begin{aligned} 1, & \text { जब } x \text { परिमेय है } \\ -1, & \text { जब } x \text { अपरिमेय है }\end{aligned}\right.$

द्वारा $[5,6]$ पर परिभाषित फलन $f$ समाकलनीय है।
(ii) -2 अंतराल $[-3,2]$ का एक सीमा बिन्दु है।
(iii) $f(x)=20-[x]$ द्वारा परिभाषित फलन $f:[1,50] \rightarrow \mathbf{R} \quad([x] \equiv$ महत्तम पूर्णांक फलन) संतत है।
(iv) $\sum(-1)^{n} \frac{2}{n}$ एक अभिसारी श्रेणी है।
(v) फलन $f(x)=x^{3}-4 x^{2}+5 x-2$ के लिए एक ऐसा बिन्दु $c \in] 1,2\left[\right.$ है कि $f^{\prime}(c)=0$ है।
2. (क) सिद्ध कीजिए कि समीकरण $3 \cos x=e^{-3 x}$ के किन्हीं दो मूलों के बीच में कम से कम एक मूल तो समीकरण $e^{3 x} \sin x=1$ का है। 3
(ख) जाँच कीजिए कि अंतराल $[7,11[$ और $] 2,6]$ तुल्य हैं या नहीं। 2
(ग) सिद्ध कीजिए कि प्रत्येक निरपेक्षतः अभिसारी श्रेणी अभिसारी होती है। क्या इस कथन का विलोम भी सत्य है ? अपने उत्तर की पुष्टि कीजिए।
3. (क) योगफल

$$
\begin{aligned}
\frac{1}{n}\left[\sin \left(\frac{\pi}{n}\right)+\sin \left(\frac{2 \pi}{n}\right)+\sin \left(\frac{3 \pi}{n}\right)\right. & +\ldots \ldots \\
& \left.+\sin \left(\frac{3 x \pi}{n}\right)\right]
\end{aligned}
$$

की सीमा ज्ञात कीजिए जब $n \rightarrow \infty$ हो।
(ख) दिखाइए कि $f(x)=x^{4}$ द्वारा परिभाषित फलन $f:]-1,1[\rightarrow \mathbf{R}$ अपने प्रांत पर एकसमानत: संतत है। इस प्रकार, प्राप्त कीजिए कि यह $x=0$ पर संतत है।
(ग) असमिका $3 \leq 4 x-2 \leq 5$ को परिमाण रूप में व्यक्त कीजिए।2
4. (क) ज्ञात कीजिए : 2

$$
\lim _{x \rightarrow-3} \frac{2}{(x+3)^{2}}
$$

(ख) $x \in] 0,1[$ के लिए सिद्ध कीजिए :

$$
x<-\log (1-x)<\frac{x}{1-x}
$$

(ग) मान लीजिए $f:[0,1] \rightarrow \mathbf{R}, f(x)=4 x+1$ द्वारा परिभाषित कोई फलन है। मान लीजिए :

$$
\mathrm{P}_{1}=\left\{0, \frac{1}{2}, \frac{2}{3}, 1\right\} \text { और } \mathrm{P}_{2}=\left\{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\right\}
$$

अंतराल $[0,1]$ के दो विभाजन हैं। सिद्ध या असिद्ध कीजिए :

$$
\mathrm{L}\left(\mathrm{P}_{2}, f\right) \leq \mathrm{U}\left(\mathrm{P}_{1}, f\right)
$$

5. (क) मान लीजिए एक फलन $f$ इस प्रकार परिभाषित है :

$$
f(x)=\left\{\begin{array}{cc}
x^{2}+1, & -\infty<x \leq 1 \\
\frac{3 x^{2}-2}{x}, & 1<x \leq 2 \\
2 x-1, & 2<x<\infty
\end{array}\right.
$$

$x=1,2$ पर $f$ के सांतत्य की चर्चा कीजिए। 4
(ख) मान लीजिए $\phi \subset \mathbf{S} \subset \mathbf{R}$ और $u, \mathrm{~S}$ का एक उपरि परिबंध है। दिखाइए कि $u, \mathrm{~S}^{\prime}$ का न्यूनतम उपरि परिबंध है यदि और केवल यदि प्रत्येक $\varepsilon>0$ के लिए एक $s_{\varepsilon} \in \mathrm{S}^{\prime}$ इस प्रकार है कि $s_{\varepsilon}>u-\varepsilon$ है।
(ग) श्रेणी $\sum_{n=1}^{\infty}\left[\sqrt{n^{3}+1}-\sqrt{n^{3}-1}\right]$ के अभिसरण का परीक्षण कीजिए।
6. (क) दिखाइए कि अनुक्रम $\left\{f_{n}\right\}$, जहाँ :

$$
f_{n}(x)=\frac{x}{1+n x^{2}}, x \in[1, \infty[
$$

है, एक समानतः अभिसारी है।
(ख) एक उदाहरण देकर दिखाइए कि अनंततः अनेक विवृत समुच्चयों का उभयनिष्ठ जरूरी नहीं कि विवृत ही हो।
P. T. O.
(ग) जाँच कीजिए कि $f(x)=x-e^{-x}$ द्वारा परिभाषित फलन $f:[1,2] \rightarrow \mathbf{R}$ एकैकी है या नहीं। क्या यह आच्छादक भी है ? अपने उत्तर की पुष्टि कीजिए।
7. (क) यह दर्शाइए कि $n$ पदों के बाद शेषफल शून्य की ओर अग्रसर होता है, $\cos 3 x$ का मैक्लॉरिन श्रेणी प्रसार ज्ञात कीजिए। 4
(ख) निम्नलिखित श्रेणो के अभिसरण की जाँच कीजिए : 4

$$
\frac{1}{5}+\frac{1.4}{5.8} x+\frac{1.4 .7}{5.8 .11} x^{2}+\ldots \ldots \infty(x>0)
$$

(ग) मान ज्ञात कीजिए :

$$
\lim _{x \rightarrow 0} \frac{1-\cos 2 x}{e^{2 x}-1}
$$

