BACHELOR'S DEGREE PROGRAMME (BDP)
 Term-End Examination
 December, 2023
 (Elective Course : Mathematics)
 MTE-04 : ELEMENTARY ALGEBRA
 \&

MTE-05 : ANALYTICAL GEOMETRY
Time : 3 Hours
Maximum Marks : 50

Instructions :

1. Students registered for both MTE-04 \& MTE-05 courses should answer both the question papers in two separate answer books entering their enrolment number, course code and course title clearly on both the answer books.
2. Students who have registered for MTE-04 or MTE-05 should answer the relevant question paper after entering their enrolment number, course code and course title on the answer book.
P. T. O.

MTE-04/MTE-05

स्नातक उपाधि कार्यक्रम (बी. डी. पी.)

 सत्रांत परीक्षादिसम्बर, 2023

(ऐच्छिक पाठ्यक्रम : गणित)
एम.टी.ई.-04 : प्रारंभिक बीजगणित
एवं
एम.टी.ई.-05 : वैश्लेषिक ज्यामिति
समय : 3 घण्टे
अधिकतम अंक : 50
निर्देश :

1. जो छात्र एम.टी.ई-04 और एम.टी.ई. -05 दोनों पाठ्यक्रमों के लिए पंजीकृत हैं, दोनों प्रश्न-पत्रों के उत्तर अलग-अलग उत्तर पुस्तिकाओं में अपना अनुक्रमांक, पाठ्यक्रम कोड तथा पाठ्यक्रम नाम साफ-साफ लिखकर दें।
2. जो छात्र एम.टी.ई.-04 या एम.टी.ई.-05 किसी एक के लिए पंजीकृत हैं, अपने उसी प्रश्न-पत्र के उत्तर उत्तर-पुस्तिका में अपना अनुक्रमांक, पाठ्यक्रम कोड तथा पाठ्यक्रम नाम साफ-साफ लिखकर दें।

BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination

December, 2023
MTE-04 : ELEMENTARY ALGEBRA
Time : $1 \frac{1}{2}$ Hours
Maximum Marks : 25

Note : Question No. 5 is compulsory. Do any three questions from Question No. 1 to 4. Use of calculator is not allowed.

1. (a) Let $1, \omega, \omega^{2}$ be the cube roots of unity. Evaluate :

$$
(1-\omega)\left(1-\omega^{2}\right)\left(1-\omega^{4}\right)\left(1-\omega^{5}\right)
$$

(b) Let A and B be subsets of a Universal set X. Show that:

$$
A \Delta B=(A \cup B) \backslash(A \cap B)
$$

where Δ is the symmetric difference between A and B .
2. (a) Prove that:

$$
\begin{aligned}
& \left|\begin{array}{ccc}
a^{2} & a^{2}-(b-c)^{2} & b c \\
b^{2} & b^{2}-(c-a)^{2} & c a \\
c^{2} & c^{2}-(a-b)^{2} & a b
\end{array}\right| \\
& =(b-c)(c-a)(a-b)(a+b+c)\left(a^{2}+b^{2}+c^{2}\right)
\end{aligned}
$$

(b) If a, b, c are roots of the equation $x^{3}+q x+r=0$. Find the value of $(b-c)^{2}+(c-a)^{2}+(a-b)^{2}$.
3. (a) For $0<a_{t}<1, t=1,2, \ldots \ldots . n$ prove that : $2 \frac{1}{2}$

$$
1-\prod_{t=1}^{n} a_{t}<n-\sum_{t=1}^{n} a_{t}
$$

(b) A cinema hall has a 700 seats. There seats are divided into two sections Y and Z. The cost of ticket in section Y is $₹ 100$ and that of in Section Z is ₹ 150 . Assume that all the seats are occupied. Find the number of seats allocated to each section to get daily revenue of ₹ 80,000 .
4. (a) Solve the following system of equations by Gaussian elimination method :

$$
\begin{gathered}
x+3 y-2 z=10 \\
2 x+y+z=5 \\
6 x-3 y+7 z=15
\end{gathered}
$$

(b) Find the fourth roots of the complex number $z=i$.
5. Which of the following statements are true and which are false ? Give a short proof or a counter-example to justify your answer. $5 \times 2=10$
(a) If $\mathrm{P}(x)$ is a real polynomial having a root $z \in \mathbf{C}$, then \bar{z} is also a root of $\mathrm{P}(x)$.
(b) If

$$
\begin{gathered}
\mathrm{A}=\{x \in \mathbf{R} \mid 0 \leq x \leq 1\} \text { and } \\
\mathrm{B}=\{x \in \mathbf{R} \mid 1 \leq x \leq 3\},
\end{gathered}
$$

then $\mathrm{A} \Delta \mathrm{B}=[0,1) \cup(1,3]$.
(c) If

$$
a, b \in \mathbf{R}, a^{2}+b^{2}=1 \text { and } x^{2}+y^{2}=1
$$

then $a x+b y<1$.
(d) For any $z \in \mathbf{C}, \operatorname{Arg}(z)=\operatorname{Arg}(\bar{z})$
(e) If A and B are the subsets of the universal set X, then $A \times B=B \times A$.
P. T. 0.

MTE-04

स्नातक उपाधि कार्यक्रम (बी. डी. पी.)
सत्रांत परीक्षा
दिसम्बर, 2023
एम.टी.ई.-04 : प्रारंभिक बीजगणित
समय : $1 \frac{1}{2}$ घण्टे
अधिकतम अंक : 25

नोट : प्रश्न सं. 5 करना जरूरी है। प्रश्न सं. 1 से 4 तक से कोई तीन प्रश्न हल कीजिए। कैल्कुलेटर के प्रयोग की अनुमति नहीं है।

1. (क) मान लीजिए कि $1, \omega, \omega^{2}$ इकाई के घनमूल हैं। मान निकालिए : $2 \frac{1}{2}$

$$
(1-\omega)\left(1-\omega^{2}\right)\left(1-\omega^{4}\right)\left(1-\omega^{5}\right)
$$

(ख) मान लीजिए कि A और B एक समष्टीय समुच्चय X के उपसमुच्चय हैं। दर्शाइए कि :

$$
A \Delta B=(A \cup B) \backslash(A \cap B)
$$

है, जहाँ Δ समुच्चयों A और B के बीच सममित अन्तर है।
$2 \frac{1}{2}$
2. (क) सिद्ध कीजिए कि :

$$
\begin{aligned}
& \quad\left|\begin{array}{lll}
a^{2} & a^{2}-(b-c)^{2} & b c \\
b^{2} & b^{2}-(c-a)^{2} & c a \\
c^{2} & c^{2}-(a-b)^{2} & a b
\end{array}\right| \\
& =(b-c)(c-a)(a-b)(a+b+c)\left(a^{2}+b^{2}+c^{2}\right) \\
& \text { है। }
\end{aligned}
$$

(ख) यदि a, b और c समीकरण $x^{3}+q x+r=0$ के मूल हैं, तो

$$
(b-c)^{2}+(c-a)^{2}+(a-b)^{2}
$$

का मान ज्ञात कीजिए।
3. (क) $0<a_{t}<1, t=1,2, \ldots, n$ के लिए, सिद्ध कीजिए कि :

$$
1-\prod_{t=1}^{n} a_{t}<n-\sum_{t=1}^{n} a_{t}
$$

है।
(ख) किसी सिनेमा हॉल में 700 सीटें हैं। इन सीटों को दो अनुभागों Y और Z में विभाजित किया गया
है। अनुभाग Y में टिकट की लागत ₹ 100 है
P. T. 0.

तथा अनुभाग Z में टिकट की लागत ₹ 150 है। परिकल्पना कीजिए कि सभी सीटें भरी हुई हैं। दैनिक राजस्व ₹ 80,000 प्राप्त करने के लिए, प्रत्येक अनुभाग को बंटित सीटों की संख्या ज्ञात कीजिए।
4. (क) गाउसीय विलोपन विधि द्वारा, निम्नलिखित समीकरण-निकाय को हल कीजिए :

$$
\begin{aligned}
x+3 y-2 z & =10 \\
2 x+y+z & =5 \\
6 x-3 y+7 z & =15
\end{aligned}
$$

(ख) सम्मिश्र संख्या $z=i$ का चतुर्थ मूल ज्ञात कीजिए।

$$
2 \frac{1}{2}
$$

5. निम्नलिखित में से कौन-से कथन सत्य हैं और कौन-से कथन असत्य हैं ? अपने उत्तर की पुष्टि के लिए, एक संक्षिप्त उपपत्ति या एक प्रतिउदाहरण दीजिए। $5 \times 2=10$
(क) यदि $\mathrm{P}(x)$ एक वास्तविक बहुपद है, जिसका एक मूल $z \in \mathbf{C}$ है, तो $\mathrm{P}(x)$ का \bar{z} भी एक मूल होगा।
(ख) यदि

$$
\begin{gathered}
\mathrm{A}=\{x \in \mathbf{R} \mid 0 \leq x \leq 1\} \text { और } \\
\mathrm{B}=\{x \in \mathbf{R} \mid 1 \leq x \leq 3\},
\end{gathered}
$$

है, तो $\mathrm{A} \Delta \mathrm{B}=[0,1) \cup(1,3]$ है।
(ग) यदि $a, b \in \mathbf{R}, a^{2}+b^{2}=1$ और $x^{2}+y^{2}=1$
है, तो $a x+b y<1$ होगा। 2
(घ) किसी $z \in \mathbf{C}$ के लिए $\operatorname{Arg}(z)=\operatorname{Arg}(\bar{z})$ होता है। 2
(ङ) यदि A और B समष्टीय समुच्चय X के उपसमुच्यय हैं, तो $\mathrm{A} \times \mathrm{B}=\mathrm{B} \times \mathrm{A}$ होता है। 2
P. T. o.

MTE-05

BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination
December, 2023

MTE-05 : ANALYTICAL GEOMETRY

Time : $1 \frac{1}{2}$ Hours
Maximum Marks : 25

Note : Question No. 1 is compulsory. Answer any three questions from Question Nos. 2 to 5. Use of calculator is not allowed.

1. Which of the following statements are true and which are false ? Justify your answers :
(i) If $\frac{2}{5}, x$ and $-\frac{1}{5}$ are the direction cosines of a line, then $x=\frac{4}{5}$.
(ii) The tangent plane to a cone must pass through the origin.
(iii) Under a rotation of the axes through $\frac{\pi}{2}$, an ellipsoid becomes a sphere.
(iv) Non-degenerate conics are non-central.
(v) The curve $x y^{2}+y x^{2}=0$ is symmetric about the origin.
2. (a) Consider a point P on a parabola $y^{2}=4 a x$. Let the normal at P intersect the x-axis at Q. Draw a line at Q perpendicular to the above normal. Show that this line intersects the parabola $y^{2}+4 a(x-2 a)=0$.
(b) Check whether or not the planes

$$
\begin{aligned}
& 7 x+4 y-4 z+30=0 \\
& 12 x-17 y+4 z=3 \\
& 14 x-8 z=12-8 y
\end{aligned}
$$

3. (a) Find the equation of the straight line $2 x+y=5$ obtained after rotating the axes through 45°.2
(b) Find the equation of the cylinder whose base curve is :

$$
\begin{gathered}
x^{2}+y^{2}+z^{2}=16 \\
x-y+z=6
\end{gathered}
$$

4. Reduce the equation :

$$
7 x^{2}+18 x-62=2 y^{2}-12 x y-14 y
$$

to its standard form. Hence, identify the conic it represents.
5. (a) Obtain the intersections of the conicoid,

$$
\frac{x^{2}}{4}+\frac{y^{2}}{9}-\frac{z^{2}}{16}=-1
$$

with each of the coordinate planes. Hence give a rough sketch of the conicoid.
(b) Reduce the following equation to cartesian form. Then identify the curve it represents : 2

$$
2 r^{2}(1-\sin 2 \theta)+r \cos \theta=0 .
$$

MTE-05

स्नातक उपाधि कार्यक्रम (बी. डी. पी.)

सत्रांत परीक्षा

दिसम्बर, 2023

एम.टी.ई.-05 : वैश्लेषिक ज्यामिति

समय : $1 \frac{1}{2}$ घण्टे
अधिकतम अंक : 25

नोट : प्रश्न सं. 1 करना अनिवार्य है। प्रश्न सं. 2 से 5 तक किन्हीं तीन प्रश्नों के उत्तर दीजिए। कैल्कुलेटरों के प्रयोग की अनुमति नहीं है।

1. निम्नलिखित कथनों में से कौन-से कथन सत्य और कौन-से असत्य हैं ? अपने उत्तरों की पष्टि कीजिए :
(i) यदि $\frac{2}{5}, x$ और $-\frac{1}{5}$ एक रेखा की दिक्कोज्याएँ हैं, तो $x=\frac{4}{5}$ है।
P. T. 0.
(ii) एक शंकु का स्पर्श तल हमेशा मूलबिन्दु से गुजरता है।
(iii) अक्षों को $\frac{\pi}{2}$ से घुमाने पर एक दीर्घवृत्तज एक गोला बन जाता है।
(iv) अनअपभ्रष्ट शांकव अकेंद्रीय होते हं।
(v) वक्र $x y^{2}+y x^{2}=0$ मूलबिन्दु के सापेक्ष सममित है।
2. (क) एक परवलय $y^{2}=4 a x$ पर एक बिन्दु P लीजिए। मान लीजिए P पर अभिलंब x-अक्ष को Q पर काटता है। उपर्युक्त अभिलंब के लंबवत Q पर एक रेखा खींचिए। दिखाइए कि यह रेखा परवलय $y^{2}+4 a(x-2 a)=0$ को प्रतिच्छेद करती है। 3
(ख) जाँच कीजिए कि समतल

$$
\begin{gathered}
7 x+4 y-4 z+30=0 \\
12 x-17 y+4 z=3 \\
14 x-8 z=12-8 y
\end{gathered}
$$

और $36 x=51 y-12 z$
किसी घनाभ के 4 फलकों को निरूपित कर सकते हैं या नहीं। 2
3. (क) सरल रेखा $2 x+y=5$ का वह समीकरण ज्ञात कीजिए जो अक्षों को 45° से घुमाने के बाद प्राप्त होता है। 2
(ख) उस बेलन का समीकरण ज्ञात कीजिए जिसका आधार वक्र $x^{2}+y^{2}+z^{2}=16, x-y+z=6$ है। 3
4. समीकरण

$$
7 x^{2}+18 x-62=2 y^{2}-12 x y-14 y
$$

को इसके मानक रूप में समानीत कीजिए। इस तरह, इसके द्वारा निरूपित शांकव को पहचानिए। 5
5. (क) शांकवज $\frac{x^{2}}{4}+\frac{y^{2}}{9}-\frac{z^{2}}{16}=-1$ का प्रत्येक निर्देशांक तल के साथ प्रतिच्छेद ज्ञात कीजिए। इस प्रकार, इस शांकवज का एक स्थूल आरेख दीजिए। 3
(ख) निम्नलिखित समीकरण को कार्तीय रूप में समानीत कीजिए। तब इसके द्वारा निरूपित वक्र को पहचानिए :

$$
2 r^{2}(1-\sin 2 \theta)+r \cos \theta=0
$$

