BACHELOR OF SCIENCE (GENERAL)
 (BSCG)

Term-End Examination
December, 2023

BCHCT-137 : COORDINATION CHEMISTRY, STATES OF MATTER AND CHEMICAL KINETICS

Time : 2 Hours
Maximum Marks : 50

> Note : Attempt any five questions from Part A and any five questions from Part B on separate answer-sheets. All questions carry equal marks.

Part-A
(Marks : 25)

1. Attempt any two parts :
$2.5 \times 2=5$
(a) Why are zinc and cadmium soft?
(b) Which of these is coloured and why :

$$
\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \text { or }\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} ?
$$

P. T. 0.
(c) Why are the second ionisation enthalpies of chromium and copper higher than expected?
2. Discuss the ways in which the actinoids resemble their lanthanoid congeners.

Or

What is lanthanoid contraction ? Give an important consequence of this.
3. (a) Determine the coordination number and oxidation state of the central metal in (i) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ and (ii) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right] .3$
(b) Write the IUPAC names of any two of the following :
(i) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{SCN})_{6}\right]$
(ii) $\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$
(iii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Br}_{3}$
4. (a) Label the following ligands as monodentate, bidentate, ambidentate or polydentate (any three) : 3
(i) Trimethyl phosphene--PMe3
(ii) 1, 2-diaminoethane-en
(iii) Nitrite- NO_{2}^{-}
(iv) EDTA
(b) Write the formulae of the following :
(i) Potassium trioxalatoferrate (III)
(ii) μ-dihydroxidobis \{tetraamine cobalt (III)\} nitrate
5. (a) Mention the isomerism depicted in the following pairs :
(i) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Br}_{2}$ and
$\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br}_{2}\right] \mathrm{Cl}_{2}$
(ii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$ and
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$
(b) Using VBT, predict the hybridization, geometry and number of unpaired electrons in $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$.
6. (a) What would be the CFSE for an octahedral complex of a d^{7} ion in weak field and strong field?

4
(b) Mention one important compound in bioinorganic chemistry containing iron. 1
7. For the low spin complex $\left[\mathrm{Fe}(\mathrm{en})_{3}\right] \mathrm{Cl}_{3}$, find :
(i) the oxidation number of iron
(ii) the geometry of the complex
(iii) whether it is diamagnetic or paramagnetic
(iv) the number of unpaired electrons in the complex
Part-B
(Marks : 25)
8. (a) Write down van der Waals equation and explain volume correction and pressure correction terms briefly. 2
(b) State law of corresponding states and write its equation.
9. (a) Define an ideal gas. Derive the expression for ideal gas equation. 3
(b) What do you understand by mean free path ? Derive its mathematical formula and explain all the terms.
10. (a) Explain three characteristic properties of liquids and discuss their importance. 3
(b) Discuss the effect of temperature on viscosity of liquids and draw the nature of plot between $\log \eta$ and $\frac{1}{\mathrm{~T}}$.

11. (a) Explain the characteristics of ionic solids
and suggest any two examples for the
same.
3
(b) What are crystal systems ? Give the relationship between their axes and angle for a cubic system. 2
12. (a) Draw the structures of unit cells of CsCl , NaCl and ZnS .
(b) Write briefly about liquid crystals. Also give structure of an organic compound that is liquid crystal. 2
P. T. O.
13. (a) What do you understand by zeroth order of reaction? Explain with a suitable example. Draw the nature of plot of integrated rate law for zero order reaction.
(b) First order rate constant for the decomposition :

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}
$$

at 340 K is $5.20 \times 10^{-3} \mathrm{~s}^{-1}$. Calculate the time required to reduce concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ to its half. 2
14. Explain activated complex theory with the help of graphical representation of change in potential energy. Discuss about energy requirement for the reaction.

BCHCT-137

विज्ञान स्नातक (सामान्य)
 (बी. एस-सी. जी.)
 सत्रांत परीक्षा
 दिसम्बर, 2023

बी. सी. एच. सी. टी.-137 : उपसहसंयोजन रसायन, द्रव्य की अवस्थाएँ और रासायनिक बलगतिकी

समय : 2 घण्टे अधिकतम अंक : 50

नोट : भाग 'क' और 'ख' दोनों से पाँच-पाँच प्रश्नों के उत्तर अलग-अलग उत्तर-पुस्तिकाओं में दीजिए। सभी प्रश्नों के अंक समान हैं।

भाग-क
(अंक : 25)

1. किन्हीं दो भागों के उत्तर दीजिए :
(क) जिंक और कैडमियम नरम क्यों होते हैं ?
(ख) $\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ या $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ कौन-सा रंगीन है और क्यों ?
(ग) क्रोमियम और कॉपर की द्वितीय आयनन एन्थैल्पी अपेक्षित से ज्यादा क्यों होती है ?
P. T. O.
2. उन तरीकों पर चर्चा कीजिए, जिनमें एक्टिनॉइड अपने समकक्ष लैंथनॉइडों से समानता दर्शाते हैं।

अथवा

लैंथनॉइड संकचन क्या होता है ? इसका एक महत्वपूर्ण परिणाम दीजिए।
3. (क)(i) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ और (ii) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ के केन्द्रीय धातु की समन्वय संख्या व ऑक्सीकरण अवस्था निर्धारत कीजिए। 3
(ख) निम्नलिखित में से किन्हीं दो के IUPAC नाम दीजिए :
(i) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{SCN})_{6}\right]$
(ii) $\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$
(iii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Br}_{3}$
4. (क)निम्नलिखित लिगेण्डों को एकदंती, द्विदंती, उभयदंती या बहुदंती के रूप में लेबल कीजिए (कोई तीन) :
(i) ट्राइमेथिल फॉस्फीन- PMe_{3}
(ii) 1,2-डाइऐमीनोएथेन-en
(iii) नाइट्राइट- NO_{2}^{-}
(iv) EDTA
(ख)निम्नलिखित क सूत्र दीजिए : 2
(i) पोटैशियम ट्राइऑक्जेलेटोफेरेट (III)
(ii) μ-डाइहाइड्रॉक्सिडोबिस \{टेट्राऐमीन कोबाल्ट (III)\} नाइट्रट
5. (क)निम्नलिखित जोड़ों में कौन-सा समावयवता दर्शाता है ?
(i) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Br}_{2}$ व
$\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br}_{2}\right] \mathrm{Cl}_{2}$
(ii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$ व
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$
(ख) संयोजकता आबंध सिद्धान्त (VBT) प्रयोग करके $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ का संकरण, ज्यामिति और अयुग्मित इलेक्ट्रॉनों को संख्या का पूर्वानुमान कीजिए। 3
6. (क) किसी d^{7} आयन की अष्टफलकीय संकुल क दुर्बल क्षेत्र व प्रबल क्षेत्र में क्रिस्टल क्षेत्र विपाटन ऊर्जा (CFSE) क्या होगी ?
(ख)लोहा युक्त किसी महत्वपूर्ण यौगिक का नाम दीजिए जो अकार्बनिक जैवरसायन में प्रयोग होते हैं।
7. निम्न प्रचक्रण वाले संकुल $\left[\mathrm{Fe}(\mathrm{en})_{3}\right] \mathrm{Cl}_{3}$ के लिए ज्ञात कीजिए :
(i) लोह की ऑक्सीकरण संख्या
(ii) संकुल को ज्यामिति
(iii) प्रतिचुंबकीय या अनुचुबकीय
(iv) संकुल क अयुग्मित इलेक्ट्रॉनों की संख्या
भाग-ख
8. (क) वाण्डर वाल्स समीकरण लिखिए और आयतन और दाब संशोधन पदों की शर्तों की संक्षेप में व्याख्या कीजिए। 2

> (ख) संगत प्रावस्था का नियम दीजिए और उसका समीकरण लिखिए।
9. (क)आदर्श गैस की परिभाषा दीजिए। आदर्श गैस समीकरण व्युत्पन्न कीजिए। 3
(ख)औसत मक्त पथ क्या होता है ? इसका गणितीय सूत्र व्युत्पन्न कीजिए और सभी पदों की व्याख्या कीजिए।
10. (क)द्रवों के तीन अभिलाक्षणिक गुणों की व्याख्या कीजिए और उनके महत्व की चर्चा कीजिए। 3
(ख)द्रवों के पृष्ठ तनाव पर तापमान के प्रभाव की चर्चा कीजिए और $\log \eta$ व $\frac{1}{\mathrm{~T}}$ के बीच आरेख की प्रकृति दर्शाइए।
11. (क)आयनिक ठोसों की विशेषताओं की व्याख्या कीजिए और उनके कोई दो उदाहरण दीजिए। 3
(ख) क्रिस्टल तंत्र क्या होते हैं ? घनीय तंत्र के लिए अक्षों और कोणों के बीच संबंध दीजिए। 2
12. (क) $\mathrm{CsCl}, \mathrm{NaCl}$ और ZnS के एकक सेलों की संरचनाएँ आरेखित कीजिए। 3
(ख)द्रव क्रिस्टलों के बारे में संक्षेप में लिखिए। किसी कार्बनिक यौगिक की, जो कि द्रव क्रिस्टल है, उदाहरण भी दीजिए।
13. (क)शून्य कोटि अभिक्रिया का क्या अर्थ होता है ? उपयुक्त उदाहरण के साथ व्याख्या कीजिए। शून्य कोटि अभिक्रिया के लिए समाकलित दर नियम क आरेख की प्रकृति दर्शाइए।
P. T. O.
(ख) अपघटन $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$ के लिए 340 K पर प्रथम कोटि दर स्थिरांक $5.20 \times 10^{-3} \mathrm{~s}^{-1}$ है। $\mathrm{N}_{2} \mathrm{O}_{5}$ की सांद्रता को उसका आधा करने के लिए आवश्यक समय का परिकलन कीजिए। 2
14. स्थितिज ऊर्जा में परिवर्तन के आलेखीय निरूपण की सहायता से सक्रियित संकुल सिद्धान्त की व्याख्या कीजिए। अभिक्रिया के लिए ऊर्जा की आवश्यकता के बारे में चर्चा कीजिए। 5

