Ph. D. (MATHEMATICS)

(PHDMT)
Term-End Examination
December, 2022

RMTE-105: PARTIAL DIFFERENTIAL EQUATIONS (ELECTIVE)

Time : 3 Hours
Maximum Marks : 100

Note: (i) Question No. 1 is compulsory.
(ii) Answer any nine questions out of remaining Q. No. 2 to 12.
(iii) Use of scientific and non-programmable calculator is allowed.

1. State whether the following statements are True or False. Justify your answer with the help of a short proof or a counter-example. No marks will be awarded without justification :

$$
2 \times 5=10
$$

(a) Characteristic method can be used to convert some non-linear p.d.e. into a system of o.d.e.
P.T. O.
(b) If:

$$
\begin{aligned}
& \mathrm{L} u=f \text { in } \mathrm{U} \\
& u=0 \text { on } \partial \mathrm{U}
\end{aligned}
$$

where U is an open, bounded subset of \mathbf{R}^{n} and $u: \overline{\mathrm{U}} \rightarrow \mathbf{R}$ is the unknown $u=u(x)$. Here $f: \mathrm{U} \rightarrow \mathbf{R}$ is given and

$$
\begin{aligned}
\mathrm{L} u= & -\sum_{i, \dot{z}=1}^{n} a^{i \dot{z}}(x) u_{x_{i} x_{\dot{z}}} \\
& +\sum_{i=1}^{n} b^{i}(x) u_{x_{i}}+c(x) u
\end{aligned}
$$

then the p.d.e. $L u=f$ is in divergence form.
(c) If X be a vector space, then an inner product on X is a definite positive symmetric, bilinear form on X .
(d) If $\mathrm{H}=\mathbf{R}^{2}$ and $a(x, y)=2 x_{1} y_{1}+3 x_{2} y_{2}$, where $x=\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2}$ and $y=\left(y_{1}, y_{2}\right) \in \mathbf{R}^{2}$, then $a(x, y)$ is coercive.
(e) Cole-Hopf transformation can be used to solve :

$$
\begin{gathered}
u_{t t}-3 u_{x x}+5 u_{x}^{2}=0 \text { in } \mathbf{R} \times(0, \infty) \\
u=x^{2} \text { on } \mathbf{R} \times\{t=0\}
\end{gathered}
$$

2. Determine an explicit solution for a function u solving the initial-value problem :

$$
\begin{gathered}
u_{t}+b \cdot \mathrm{D} u=0 \text { in } \mathrm{R}^{n} \times(0, \infty) \\
u=x^{2}+1 \text { on } \mathbf{R}^{n} \times\{t=0\}
\end{gathered}
$$

where $b \in \mathbf{R}^{n}$.
3. Using characteristic method, determine the solution of the equation :

$$
\begin{aligned}
u_{x}+3 u_{y} & =u^{2} \text { in } \mathrm{U} \\
u & =g \text { on } \pi
\end{aligned}
$$

where U is the half-space $\{x>0\}$ and $\Gamma=\{x=0\}=\partial \mathrm{U}$.
4. Use Fourier transformation to solve the equation :

$$
\frac{\partial u}{\partial t}=4 \frac{\partial^{2} u}{\partial x^{2}}, \quad-\infty<x<\infty, t>0
$$

subject to the following conditions :
(i) $u, \frac{\partial u}{\partial x} \rightarrow 0$ as $x \rightarrow \pm \infty$
(ii) $u(x, 0)= \begin{cases}1, & 0<x<1 \\ 0, & x>0\end{cases}$
(iii) $u(x, 0)=f(x)$
(iv) $u(x, t)$ is bounded
5. Explain for what type of equation we can apply Cole-Hopf transformation. Using Cole-Hopf transformation, determine the solution of the following equation :

$$
\begin{aligned}
u_{t}-4 u_{x x}+\frac{1}{2} u_{x}^{2} & =0 \text { in } \mathbf{R} \times(0, \infty) \\
u & =x+2 \text { on } \mathbf{R} \times(t=0)
\end{aligned}
$$

6. Define integral surface for a semi-linear Cauchy problem. Using Cauchy characteristic method, determine the solution of the equation :

$$
\begin{gathered}
u_{x}+u_{y}=u \\
u(x, 0)=1+e^{x}
\end{gathered}
$$

7. Explain fundamental solution of Laplace equation. 10
8. Solve the following equation by using Laplace transform :

$$
\begin{aligned}
& \frac{\partial u}{\partial x}-\frac{\partial u}{\partial t}=1-e^{-t}, \quad 0<x, t>0 \\
& u(x, 0)=x .
\end{aligned}
$$

9. Explain complete integral and envelope with example.
10. Explain and define second order elliptic equation in \mathbf{R}^{n}. Give an example of second order elliptic equation in \mathbf{R}^{3}.
11. Consider the boundary value problem :

$$
\begin{gathered}
\mathrm{L} u+\mu u=f \text { in } \mathrm{U} \subseteq \mathbf{R}^{n} \\
u=0 \text { on } \partial \mathrm{U}
\end{gathered}
$$

There is a number $v \geq 0$ such that $\mu \geq v$ and $f \in \mathrm{~L}^{2}(\mathrm{U})$. Explain the existence and uniqueness of weak solution for $u \in \mathrm{H}_{0}^{1}(\mathrm{U}) .10$
12. Explain weak solution of second order parabolic equation.

