BACHELOR'S DEGREE PROGRAMME

MTE-04 : ELEMENTARY ALGEBRA

&

MTE-05: ANALYTICAL GEOMETRY

Instructions:

- 1. Students registered for both MTE-04 & MTE-05 courses should answer both the question papers in two separate answer books entering their enrolment number, course code and course title clearly on both the answer-books.
- 2. Students who have registered for MTE-04 or MTE-05 should answer the relevant question paper after entering their enrolment number, course code and course title on the answer-book.

स्नातक उपाधि कार्यक्रम

एम.टी.ई.-04: प्रारंभिक बीजगणित

एवं

एम.टी.ई.-05: वैश्लेषिक ज्यामिति

निर्देश :

- 1. जो छात्र एम.टी.ई.-04 और एम.टी.ई.-05 दोनों पाठ्यक्रमों के लिए पंजीकृत हैं, दोनों प्रश्न-पत्रों के उत्तर अलग-अलग उत्तर-पुस्तिकाओं में अपना अनुक्रमांक, पाठ्यक्रम कोड तथा पाठ्यक्रम नाम साफ़-साफ़ लिखकर दें।
- 2. जो छात्र एम.टी.ई.-04 या एम.टी.ई.-05 किसी एक के लिए पंजीकृत हैं, अपने उसी प्रश्न-पत्र के उत्तर उत्तर-पुस्तिका में अपना अनुक्रमांक, पाठ्यक्रम कोड तथा पाठ्यक्रम नाम साफ़-साफ़ लिखकर दें।

3

BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination December, 2022

ELECTIVE COURSE: MATHEMATICS
MTE-04: ELEMENTARY ALGEBRA

 $Time: 1\frac{1}{2} \ hours$ $Maximum \ Marks: 25$ (Weightage: 70%)

Note: Question no. 5 is compulsory. Attempt any three questions from questions no. 1 to 4. Use of calculators is not allowed.

- 1. (a) Let 1, ω , ω^2 be the cube roots of unity. Show that $(1 \omega + \omega^2) (1 + \omega \omega^2) = 4$.
 - (b) If sum of the lengths of the sides of a triangle is given, prove that the area is greatest when the triangle is equilateral.
- **2.** (a) Obtain the eighth roots of $-\sqrt{3}$ i.
 - (b) Let A, B and C be subsets of a set X. Prove that $(B\setminus A) \cup (C\setminus A) = (B\cup C)\setminus A$.

- 3. (a) A concert hall has 400 seats. These seats are divided into two sections A and B. The cost of a ticket in section A is ₹ 155 and that in section B is ₹ 105. Assuming that all the seats are occupied, determine the number of seats allocated to each section so as to get a daily revenue of ₹ 50,000.
 - (b) Let $A = \{x \in \mathbf{Z} \mid x \text{ is a multiple of 3} \}$ and $B = \mathbf{Q} \cap \{-5, -4, -3, ..., 8, 9, 10\}.$

Represent B by the listing method and $(\mathbb{N}\setminus B)\cap A$ by property method.

3

2

3

4. (a) Can the following system of equations be solved by Cramer's rule? If yes, apply the Cramer's rule to solve it. Otherwise solve the system of equations by Gauss' Elimination method:

$$x - 3y + 2z = 7$$

$$x - y + z = 4$$

$$x - 5 = y - 2z$$

(b) If
$$z = -1 + i$$
, then find Arg $\left(\frac{1}{z}\right)$.

MTE-04 3 P.T.O.

5. Which of the following statements are *True* and which are *False*? Justify your answers with a short proof or a counter-example, wherever appropriate.

10

- (a) If A is an $n \times n$ real matrix, then $|A| = |A^{-1}|$.
- (b) Every polynomial of degree n with real coefficients has at least n real roots.
- (c) If A and B are subsets of a universal set X, then we must have $|A \times B| = |B \times A|$, where |A| denotes number of elements in A.
- (d) Let $Z \in \mathbb{C}$, $Z \neq 0$, then Z/\overline{Z} is always real.
- (e) Any set of two linear equations in two variables has a unique solution.

स्नातक उपाधि कार्यक्रम (बी.डी.पी.) सत्रांत परीक्षा दिसम्बर, 2022

ऐच्छिक पाठ्यक्रम : गणित एम.टी.ई.-04 : प्रारंभिक बीजगणित

समय : $1\frac{1}{2}$ घण्टे

अधिकतम अंक : 25

(कुल का : 70%)

3

नोट: प्रश्न सं. 5 अनिवार्य है। प्रश्न सं. 1 से 4 में से किन्हीं तीन प्रश्नों को हल कीजिए। कैल्कुलेटरों के प्रयोग करने की अनुमति नहीं है।

- - (ख) यदि किसी त्रिभुज की भुजाओं की लम्बाइयों का योगफल दिया गया हो, तो सिद्ध कीजिए कि उसका क्षेत्रफल तब अधिकतम होगा जब वह एक समबाहु त्रिभुज हो।
- **2.** (क) $-\sqrt{3}-i$ के आठवें मूल प्राप्त कीजिए । 2
 - (ख) मान लीजिए A, B और C समुच्चय X के उपसमुच्चय हैं। सिद्ध कीजिए कि (B\A) \cup (C\A) = (B \cup C)\A. 3

3. (क) किसी संगीत-समारोह के हॉल में 400 सीटें हैं। ये सीटें दो भागों A और B में विभाजित की गई हैं। भाग A में टिकट की लागत ₹ 155 है तथा भाग B में यह लागत ₹ 105 है। यह मानते हुए कि सभी सीटें भरी हुई हैं, ₹ 50,000 की दैनिक आय प्राप्त करने के लिए, प्रत्येक भाग में आबंटित सीटों की संख्या निर्धारित कीजिए।

(ख) मान लीजिए

$$A = \{x \in \mathbb{Z} \mid x, 3 \text{ का गुणज है} \}$$
 और
$$B = \mathbb{Q} \cap \{-5, -4, -3, ..., 8, 9, 10\}.$$

3

2

3

B को सूची विधि से और (N\B) ∩ A को गुण विधि से निरूपित कीजिए।

4. (क) क्या निम्नलिखित समीकरण निकाय को क्रेमर नियम से हल किया जा सकता है ? यदि हाँ, तो क्रेमर नियम का प्रयोग करके हल कीजिए । अन्यथा गाउसीय निराकरण विधि से समीकरण निकाय को हल कीजिए :

$$x - 3y + 2z = 7$$
$$x - y + z = 4$$

$$x - 5 = y - 2z$$

(ख) यदि
$$z = -1 + i$$
 है, तो $Arg\left(\frac{1}{z}\right)$ ज्ञात कीजिए।

5. निम्नलिखित में से कौन-से कथन सत्य हैं और कौन-से असत्य ? जहाँ उपयुक्त हो, एक लघु उपपित्त या एक प्रत्युदाहरण के साथ अपने उत्तरों की पृष्टि कीजिए।

10

- (क) यदि A एक $n \times n$ वास्तविक आव्यूह है, तब $|A| = |A^{-1}|$ होगा ।
- (ख) कोटि n और वास्तविक गुणांक वाले प्रत्येक बहुपद के कम-से-कम n वास्तविक मूल होते हैं।
- (ग) यदि A और B एक समष्टीय समुच्चय X के उपसमुच्चय \mathring{t} हों, तो $|A \times B| = |B \times A|$ होंगा, जहाँ |A|, समुच्चय A के अवयवों की संख्या है।
- (घ) मान लीजिए $\mathbf{Z} \in \mathbf{C},\, \mathbf{Z} \neq \mathbf{0},\,$ तब $\mathbf{Z}/\overline{\mathbf{Z}}\,$ हमेशा वास्तविक होगा ।
- (ङ) किन्हीं दो चरों वाले दो रैखिक समीकरणों के लिए एक अद्वितीय हल होता है।

MTE-04 7 P.T.O.

BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination December, 2022

ELECTIVE COURSE : MATHEMATICS
MTE-05 : ANALYTICAL GEOMETRY

Time: $1\frac{1}{2}$ hours Maximum Marks: 25

(Weightage: 70%)

10

Note: Question no. 1 is compulsory. Answer any three questions from questions no. 2 to 5. Use of calculators is not allowed.

- **1.** Which of the following statements are *True* and which are *False*? Justify your answer.
 - (a) The equation $r = \cos \theta$ represents a circle in polar coordinates.
 - (b) A conic has a unique directrix.
 - (c) Every planar section of a hyperboloid is an ellipse.

- (d) There exists a unique plane passing through any three given points.
- (e) The equation of the line passing through (4,0,0) and parallel to the z-axis is x-4=y=z.
- 2. (a) Show that the point (2, 1, 0) is equidistant from the line $\frac{x-3}{2} = \frac{y+1}{1}$, z = 0 and the plane 2x + y = 0.
 - (b) Find the new equation obtained from $x^2 + y^2 + 4x 2y + 4 = 0$ after shifting the origin to (-2, 1) and then rotating the axes through 45° .

3

2

3

2

- 3. (a) Find the centre and the radius of the sphere $x^2 + y^2 + z^2 8x + 4y + 8z 45 = 0.$ Hence, determine whether the point (1, -2, 0) lies inside or outside the sphere.
 - (b) Write the equation of a pair of straight lines through the points of intersection of $x^2 + y^2 = 1$ and $x^2 y^2 + 2xy 3 = 0$.
- **4.** (a) Find the equations of the tangent planes to the conicoid $7x^2 3y^2 z^2 + 21 = 0$ which pass through the line 7x 6y + 3 = 0, z = 3.
 - (b) Find the equation of a parabola with focus (3, -4) and directrix x + y = 2.

5. (a) Reduce the equation

$$25x^2 + 4y^2 - z^2 = 50x + 2z + 12 - 16y$$

to standard form. Hence, identify the object it represents.

3

2

(b) If L_1 and L_2 are two parallel lines with direction cosines l_1 , m_1 , n_1 and l_2 , m_2 , n_2 , respectively, then show that

$$(l_1-l_2)^2+({\bf m}_1-{\bf m}_2)^2+({\bf n}_1-{\bf n}_2)^2$$

is a positive constant.

स्नातक उपाधि कार्यक्रम (बी.डी.पी.) सत्रांत परीक्षा दिसम्बर, 2022

ऐच्छिक पाठ्यक्रम : गणित एम.टी.ई.-05 : वैश्लेषिक ज्यामिति

समय : $1\frac{1}{2}$ घण्टे

अधिकतम अंक : 25

(कुल का: 70%)

नोट: प्रश्न सं. 1 अनिवार्य है । प्रश्न सं. 2 से 5 में से किन्हीं तीन प्रश्नों के उत्तर दीजिए । कैल्कुलेटरों के प्रयोग करने की अनुमित नहीं है ।

- निम्नलिखित में से कौन-से कथन सत्य हैं और कौन-से असत्य ? अपने उत्तरों की पृष्टि कीजिए ।
 - (क) समीकरण $r = \cos \theta$ ध्रुवीय निर्देशांकों में एक वृत्त को निरूपित करता है ।
 - (ख) एक शांकव की केवल एक ही नियता होती है।
 - (ग) एक अतिपरवलयज का प्रत्येक समतल प्रतिच्छेद एक दीर्घवृत्त होता है ।

- (घ) किन्हीं तीन दिए हुए बिन्दुओं से केवल एक समतल गुज़रता है।
- (ङ) (4, 0, 0) से गुज़रने वाली और z-अक्ष के समांतर रेखा का समीकरण x - 4 = v = z है ।
- 2. (क) दिखाइए कि बिन्दु (2, 1, 0) रेखा $\frac{x-3}{2} = \frac{y+1}{1}$, z = 0 और समतल 2x + y = 0 से समान दरी पर है।
 - (ख) मूल-बिन्दु को (-2, 1) पर स्थानांतिरत करने के बाद अक्षों को 45° से घुमाने पर

$$x^2 + y^2 + 4x - 2y + 4 = 0$$

से प्राप्त नया समीकरण ज्ञात कीजिए ।

3

2

2

3

3

2

- 3. (क) गोले $x^2 + y^2 + z^2 8x + 4y + 8z 45 = 0$ के केंद्र और त्रिज्या ज्ञात कीजिए । इस प्रकार, निर्धारित कीजिए कि बिन्दु (1, -2, 0) इस गोले के अंदर है या बाहर ।
 - (ख) $x^2 + y^2 = 1$ और $x^2 y^2 + 2xy 3 = 0$ के प्रतिच्छेद बिन्दुओं से गुज़रने वाले सरल रेखा युग्म का समीकरण लिखिए ।
- **4.** (क) शांकवज $7x^2 3y^2 z^2 + 21 = 0$ के उन स्पर्श समतलों के समीकरण ज्ञात कीजिए जो रेखा 7x 6y + 3 = 0, z = 3 से गुज़रते हैं।
 - (ख) नाभि (3, 4) और नियता x + y = 2 वाले परवलय का समीकरण ज्ञात कीजिए।

5. (क) समीकरण

 $25x^2 + 4y^2 - z^2 = 50x + 2z + 12 - 16y$ को मानक रूप में समानीत कीजिए । इस प्रकार, इसके द्वारा निरूपित आकृति को पहचानिए ।

3

(ख) यदि $\rm L_1$ और $\rm L_2$ दो समांतर रेखाएँ हैं जिनकी दिक्कोज्याएँ क्रमश: $l_1,\, m_1,\, n_1$ और $l_2,\, m_2,\, n_2$ हैं, तो दिखाइए कि

$$(l_1-l_2)^2 + (\mathbf{m}_1-\mathbf{m}_2)^2 + (\mathbf{n}_1-\mathbf{n}_2)^2$$
 एक धनात्मक अचर है ।
$$2$$