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MTE-04 : ELEMENTARY ALGEBRA
&
MTE-05 : ANALYTICAL GEOMETRY

Instructions :

1.

Students registered for both MTE-04 & MTE-05
courses should answer both the question papers
in two separate answer books entering their
enrolment number, course code and course title
clearly on both the answer-books.

Students who have registered for MTE-04 or
MTE-05 should answer the relevant question
paper after entering their enrolment number,
course code and course title on the answer-book.
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MTE-04

BACHELOR’S DEGREE PROGRAMME
(BDP)
Term-End Examination
December, 2022

ELECTIVE COURSE : MATHEMATICS
MTE-04 : ELEMENTARY ALGEBRA

Time : 1 é hours Maximum Marks : 25
(Weightage : 70%)

Note: Question no. 5 is compulsory. Attempt any three
questions from questions no. 1 to 4. Use of

calculators is not allowed.

1. (a) Let1, o, ®? be the cube roots of unity. Show
that (1 -0+ 02) (1 + w — 0?2) = 4. 2

(b) If sum of the lengths of the sides of a

triangle is given, prove that the area is

greatest when the triangle is equilateral. 3

2. (a) Obtain the eighth roots of — v/3 — i. 2

(b) Let A, B and C be subsets of a set X. Prove
that (B\A) U (C\A) =(B U C)\A. 3
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3. (a) A concert hall has 400 seats. These seats
are divided into two sections A and B. The
cost of a ticket in section A is ¥ 155 and
that in section B is ¥ 105. Assuming that
all the seats are occupied, determine the
number of seats allocated to each section so

as to get a daily revenue of ¥ 50,000. 3

(b) LetA={xe Z |xis amultiple of 3} and
B=Qn{-5,-4,-3,..,8,9, 10}.
Represent B by the listing method and
(N\B) N A by property method. 2

4. (a) Can the following system of equations be
solved by Cramer’s rule ? If yes, apply the
Cramer’s rule to solve it. Otherwise solve

the system of equations by Gauss’

Elimination method : 3
x—3y+2z="17
X—-y+z=4
x—-5=y-2z
(b) Ifz=-1+1i,then find Arg (%j 2
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5.  Which of the following statements are True and
which are False ? Justify your answers with a
short proof or a counter-example, wherever

appropriate. 10

(@) If A is an nxn real matrix, then

|A] = |ATL].

(b) Every polynomial of degree n with real

coefficients has at least n real roots.

(¢) If A and B are subsets of a universal set X,
then we must have |AxB|=|BxA|,

where |A| denotes number of elements in A.
(d) LetZe C,Z=0,then Z/Z is always real.

(e) Any set of two linear equations in two

variables has a unique solution.
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MTE-05

BACHELOR’S DEGREE PROGRAMME
(BDP)

Term-End Examination

December, 2022

ELECTIVE COURSE : MATHEMATICS
MTE-O5 : ANALYTICAL GEOMETRY

Time : 1 é hours Maximum Marks : 25

(Weightage : 70%)

Note: Question no. 1 is compulsory. Answer any three
questions from questions no. 2 to 5. Use of

calculators is not allowed.

1. Which of the following statements are True and

which are False ? Justify your answer. 10

(a) The equation r = cos 0 represents a circle in
polar coordinates.

(b) A conic has a unique directrix.

(c) Every planar section of a hyperboloid is an

ellipse.
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(d)

(e)

2. (a)
(b)
3. (a)
(b)
4. (a)
(b)
MTE-05

There exists a unique plane passing
through any three given points.

The equation of the line passing through
(4,0,0) and parallel to the z-axis is
Xx—4=y=z.

Show that the point (2, 1, 0) is equidistant

from the line X;3 = y1r1,z=0:and the

plane 2x + y = 0.

Find the new equation obtained from
x2+y2+4x—2y+4=0

after shifting the origin to (— 2, 1) and then

rotating the axes through 45°.

Find the centre and the radius of the sphere
x2+y2+22-8x+4y+82-45=0.

Hence, determine whether the point (1, — 2, 0)

lies inside or outside the sphere.

Write the equation of a pair of straight lines

through the points of intersection

x2+y2=1andx2—y2+2xy—3=0.

Find the equations of the tangent planes to
the conicoid 7x2 — 3y2 — z2 + 21 = 0 which
pass through the line 7x -6y +3=0, z = 3.

Find the equation of a parabola with focus
(3, —4) and directrix x + y = 2.

2

3

2
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(b)

MTE-05

Reduce the equation
25x2 + 4y% — z2 = 50x + 2z + 12 — 16y
to standard form. Hence, identify the object

it represents.

If L; and Ly are two parallel lines with
direction cosines /{, mj, n; and /9, my, no,

respectively, then show that
(11 —19)? + (mg — my)? + (n — ng)?

is a positive constant.
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