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ELECTIVE COURSE : MATHEMATICS
MTE-11 : PROBABILITY AND STATISTICS

Time : 2 hours Maximum Marks : 50
(Weightage : 70%)

Note: Question no. 7 is compulsory. Attempt any four
questions from Questions No. 1 to 6. Use of
calculators is not allowed. All the symbols have

their usual meaning.

1. (a) Calculate mean and median from the

following data : 4
Marks No. of Students
0-10 5
10 - 20 15
20 - 30 20
30 — 40 10
40 - 50 8
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(b)

(c)

2. (a)

(b)

3. (a)

MTE-11

Rajesh and Rohan appear in an interview for
two vacancies for the same post. The
probability of Rajesh’s selection is % and
Rohan’s selection is % Find the probability
that

(1) both of them will be selected,
(i1) only one of them will be selected,

(ii1) none of them will be selected.

Let X and Y be two independent random
variables with Var(X) = 2 and Var(Y) = k. If
the variance of 3X —Y is 25, find the value
of k.

If X follows the uniform distribution on
[0, a], then find its moment generating

function.

Let x4, X9, ... X, be a random sample from a
Poisson distribution with parameter A.

Obtain maximum likelihood estimator of A.

Let x4, Xg, ... X, be a random sample from a
normal distribution N(u, 4). Find a critical

region for testing
Hp:p=pp against Hy:p=pq (ng>pp)
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(b)

4. (a)

(b)
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Show that the weighted arithmetic mean of

first n natural numbers whose weights are

equal to the corresponding number is equal

to @n+1) .

3

Look at the data given in the following

table where X is the independent variable

and Y is the dependent one.

regression line Y = a + bX.

X Y
1 2
2 4
3 7
4 6
5 5
6 6
7 5

Fit the

Let X and Y be two random variables having

joint probability density function

f(x,y):%;OSy

Find

<

X

<2

(i) the marginal density function of X and

Y

(ii) conditional density f (Z

X

)

(i1i) check the independence of X and Y
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5. (a)

(b)

(c)

6. (a)

(b)
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If a random variable X follows the Poisson
distribution such that P[x = 1] = P[x = 2],
find

(1) the mean of the distribution
(11) P[x=0]

(ii1) standard deviation of the distribution

In a large population, the proportion of
people having a certain disease is 0-:02. Find
the probability that in a random group of
100 people, at least 2 will have the disease.

Let X follow gamma distribution with
parameters a and b with mean = 2 and

variance 5. Find a and b.

There are two coins — one unbiased with

PH) = %, the other biased with P(H) = %

One of these coins is selected and tossed
4 times. If the head comes at least twice,
the coin is assumed to be unbiased. Find
the level of significance and power of the
test.

The first three moments of a distribution

about the value 2 of a variable are 1, 16,

— 40. Show that the mean is 3, the variance
is 15 and pg = — 86.
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7. Which of the following statements are true
or false ? Give a short proof or a counter example

in support of your answer : 5x2=10

(a) If a distribution is skewed to the right, then

Mean < Median < Mode.
(b) If byy= é, byx = i, then r = é

(0 If X and Y are independent random
variables, then the moment generating

function is

MX+Y(t) = MX(t) + MY(t)

(d) If a dice is thrown two times, then the

probability of getting a sum of 10 on the

faces is l .
9

(e) H:p < py where p is the mean of normal

distribution with variance 4, is a simple

hypothesis.
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1. () fafafga stiewst & foru miew o mfeyen

Wf%lﬁaﬁﬁm: 4
0-10 5
10 - 20 15
20 - 30 20
30 — 40 10
40 - 50 8
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(@) T 3R VS Th 99H 98 & o @’ 9a

2. (%)

(@)
3. (%)
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\V)

Ife X U [0, a] W THEAN &7 | =,
FEHI TV e B AT hIfT | 5

a4 e &6 X1, X9, ... Xn,@‘ﬂT{:ﬁ W,
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(@) Wiz foh TIH n WTehideh @A &I ARG

@2n+1)

AT ALY 2, Tefh YR TG &I

& qAH 2 |
4. (%) Ffafea arefl 4 few 7o etfee <fifs foma

X Teh Taad =1 8 3N Y Uh I%add =W 3 |
TSI TGT Y = a + bX A HifT |

X Y
1 2
2 4
3 7
4 6
5 5
6 6
7 5

(@) 7H e fh X 3R Y 31 agfess =X & e
TIH W] Tcd had (HHfaRad ® -

fix,y) =
EICECAIE LY

() X 3T Y T G =cd Bl

;0<y<x<2

Do |

(ii) f(Xj 1 gidefed gca
X

(iii) X 3T Y <hl Ta1a=adn <kl = <hifsre
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7. TafafRea & @ $HE +9 g7 3 J¥a1 HHA
G ? AW IW + U H Hid Iw9fa A
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