No. of Printed Pages: 3

BIMEE-013

P.T.O.

B.Tech. MECHANICAL ENGINEERING (BTMEVI)

Term-End Examination

December, 2017

00502

BIMEE-013

BIMEE-013: FINITE ELEMENT ANALYSIS

Ti	me : 3	hours Maximum Marks:	Maximum Marks : 70		
Note: Attempt any five questions. All questions can equal marks. Use of scientific calculator permitted. Standard symbols and notations had their usual meaning.					
1.	(a)	What are the various types of analysis carried out by using FEM? Elaborate.	7		
	(b)	What are the reasons to apply FEM in a thermal analysis problem? Explain in detail, choosing your own example.	7		
2.	(a)	Discuss Isoparametric Element. Describe its features and characteristics.	7		
	(b)	Describe the following:	7		
		(i) Rayleigh-Ritz method(ii) Galerkin approach			

beams. (b) Determine the constant load vector for a CST element under the action of gravity acting in the plane of the element. 4. (a) How can a three-dimensional problem be reduced into a two-dimensional approach? Explain in detail. (b) Compare the variational and weighted residual methods in detail. 5. (a) Develop stiffness matrix equation and shape functions for an axi-symmetric triangular element. (b) Distinguish between the following: (i) Essential boundary condition and Natural boundary condition (ii) Boundary value problem and Initial value problem	3.	(a)	Explain the steps involved in the analysis of	
CST element under the action of gravity acting in the plane of the element. 4. (a) How can a three-dimensional problem be reduced into a two-dimensional approach? Explain in detail. (b) Compare the variational and weighted residual methods in detail. 5. (a) Develop stiffness matrix equation and shape functions for an axi-symmetric triangular element. (b) Distinguish between the following: (i) Essential boundary condition and Natural boundary condition (ii) Boundary value problem and Initial			beams.	7
reduced into a two-dimensional approach? Explain in detail. (b) Compare the variational and weighted residual methods in detail. 5. (a) Develop stiffness matrix equation and shape functions for an axi-symmetric triangular element. (b) Distinguish between the following: (i) Essential boundary condition and Natural boundary condition (ii) Boundary value problem and Initial		(b)	CST element under the action of gravity	7
triangular element. (a) Develop stiffness matrix equation and shape functions for an axi-symmetric triangular element. (b) Distinguish between the following: (i) Essential boundary condition and Natural boundary condition (ii) Boundary value problem and Initial	4.	(a)	reduced into a two-dimensional approach?	7
shape functions for an axi-symmetric triangular element. (b) Distinguish between the following: (i) Essential boundary condition and Natural boundary condition (ii) Boundary value problem and Initial		(b)		7
(i) Essential boundary condition and Natural boundary condition(ii) Boundary value problem and Initial	5.	(a)	shape functions for an axi-symmetric	7
Natural boundary condition (ii) Boundary value problem and Initial		(b)	Distinguish between the following:	7
•				

6. Figure 1 shows a truss consisting of three elements whose $\frac{EA}{L}$ value is 1000 N/mm. Calculate the deflection at node 2.

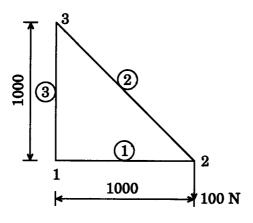


Figure 1

- 7. Write short notes on any **four** of the following: $4 \times 3\frac{1}{2} = 14$
 - (a) Post Processing
 - (b) Co-ordinate System
 - (c) Degree of Indeterminacy
 - (d) Static and Dynamic Analysis
 - (e) Variational Functions
 - (f) Dimensionability