B. Tech. (AEROSPACE ENGINEERING)
(BTAE)

Term-End Examination
 December, 2017
 BAS-014 : AIRCRAFT STRUCTURES

Time : 3 hours

Maximum Marks : 70
Note: (i) Answer any SEVEN questions.
(ii) All questions carry equal marks.
(iii) Use of Non - programmable calculator is permitted.

1. (a) Briefly explain the following :

5
(i) Strain gauges
(ii) Torque wrenches
(b) Draw a Typical V-n diagram for a jet aircraft. Discuss the salient features of the diagram.
2. Discuss the following. Draw sketches wherever $\mathbf{1 0}$
applicable.
(a) Principal Stress
(b) Volumetric Strain
(c) Bulk Modulus
(d) Shear Stress
(e) Resilience
3. A 2 metre long cantilever made of steel tube of section 150 mm external diameter and 10 mm thickness is loaded as shown in the figure. If $\mathrm{E}=200 \mathrm{GN} / \mathrm{m}^{2}$.

Calculate :

(a) The value of W so that maximum bending stress is $150 \mathrm{MN} / \mathrm{m}^{2}$.
(b) The maximum deflection for the loading.

4. A simply supported beam with a span of 4.5 meters carries a point load of 30 kN at 3 meters from the left support. If, for the section, $\mathrm{I}_{x x}=54.97 \times 10^{-6} \mathrm{~m}^{4}$ and $E=200 \mathrm{GN} / \mathrm{m}^{2}$, find:
(a) The deflection under the load.
(b) The position and amount of maximum deflection.
5. An overhanging beam $A B C$ is loaded as shown 10 in the figure.

Determine :

(a) Deflection at ' C '.
(b) Maximum deflection between A and B .

Take $\mathrm{E}=200 \times 10^{6} \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{I}=24 \times 10^{-6} \mathrm{~m}^{4}$

6. A 2 meters long cantilever of rectangular section of 150 mm wide and 300 mm deep is loaded as shown in the figure.
Calculate the deflection at the free end.
Take $\mathrm{E}=10.5 \mathrm{GN} / \mathrm{m}^{2}$.

7. A solid steel shaft has to transmit 75 kW at

200 rpm . Taking aliowable shear stress as $70 \mathrm{MN} / \mathrm{m}^{2}$, find suitable diameter for the shaft, if the maximum torque transmitted on each revolution exceeds the mean by 30%.
8. (a) For a thin cylindrical shell, explain the following :
(i) Circumferential or Hoop stress
(ii) Longitudinal stress
(b) A thin cylindrical shell of diameter 300 mm and wall thickness 6 mm has hemispherical ends. If there is no distortion of the junction under pressure, determine the thickness of hemispherical ends.
Take $\mathrm{E}=208 \mathrm{GN} / \mathrm{m}^{2}$; Poisson's ratio $=0.3$.
9. (a) Write the assumptions made while deriving the Euler's formula.
(b) A solid round bar 60 mm in diameter and 2.5 m long is used as a strut. One end of the strut is fixed, while the other end is hinged. Find the rate compressive load for the strut using Euler's formula.
Assume $\mathrm{E}=200 \mathrm{GN} / \mathrm{m}^{2}$ and Factor of safety $=3$.
10. Explain the following terms :
(a) Centroid
(b) Moment of inertia
(c) Bending moment
(d) Thick shells
(e) Torsion

