No. of Printed Pages : 4 BAS-014 B. Tech. (AEROSPACE ENGINEERING) (BTAE)

Term-End Examination

December, 2017

BAS-014 : AIRCRAFT STRUCTURES

Time : 3 hours

Maximum Marks : 70

- Note : (i) Answer any SEVEN questions.
 - (ii) All questions carry equal marks.
 - (iii) Use of Non programmable calculator is permitted.

1. (a) Briefly explain the following :

5

- (i) Strain gauges
- (ii) Torque wrenches
- (b) Draw a Typical V-n diagram for a jet 5 aircraft. Discuss the salient features of the diagram.
- 2. Discuss the following. Draw sketches wherever **10** applicable.
 - (a) Principal Stress
 - (b) Volumetric Strain
 - (c) Bulk Modulus
 - (d) Shear Stress
 - (e) Resilience

BAS-014

1

3. A 2 metre long cantilever made of steel tube of 10 section 150mm external diameter and 10mm thickness is loaded as shown in the figure. If $E = 200 \text{ GN/m}^2$.

Calculate :

- (a) The value of W so that maximum bending stress is 150 MN/m^2 .
- (b) The maximum deflection for the loading.

- 4. A simply supported beam with a span of 4.5 meters 10 carries a point load of 30 kN at 3 meters from the left support. If, for the section, $I_{xx} = 54.97 \times 10^{-6} \text{m}^4$ and $E = 200 \text{ GN/m}^2$, find :
 - (a) The deflection under the load.
 - (b) The position and amount of maximum deflection.
- 5. An overhanging beam ABC is loaded as shown 10 in the figure.

Determine :

- (a) Deflection at 'C'.
- (b) Maximum deflection between A and B. Take $E = 200 \times 10^6 \text{ kN/m}^2$ $I = 24 \times 10^{-6} \text{m}^4$

BAS-014

A 2 meters long cantilever of rectangular section 10 of 150 mm wide and 300 mm deep is loaded as shown in the figure.

Calculate the deflection at the free end. Take $E = 10.5 \text{ GN}/\text{m}^2$.

- 7. A solid steel shaft has to transmit 75 kW at 10 200 rpm. Taking allowable shear stress as 70 MN/m², find suitable diameter for the shaft, if the maximum torque transmitted on each revolution exceeds the mean by 30%.
- 8. (a) For a thin cylindrical shell, explain the 5 following :
 - (i) Circumferential or Hoop stress
 - (ii) Longitudinal stress
 - (b) A thin cylindrical shell of diameter 300mm 5 and wall thickness 6 mm has hemispherical ends. If there is no distortion of the junction under pressure, determine the thickness of hemispherical ends.

Take $E = 208 \text{ GN/m}^2$; Poisson's ratio = 0.3.

- 9. (a) Write the assumptions made while deriving **4** the Euler's formula.
 - (b) A solid round bar 60 mm in diameter and 2.5 m long is used as a strut. One end of the strut is fixed, while the other end is hinged. Find the rate compressive load for the strut using Euler's formula.

Assume $E = 200 \text{ GN/m}^2$ and Factor of safety = 3.

BAS-014

3

P.T.O.

10. Explain the following terms :

- Centroid (a)
- (b) Moment of inertia
- (c) Bending moment(d) Thick shells
- (d)
- Torsion (e)