M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination
$\square \square \square \square \square$ December, 2016

MMTE-007 : SOFT COMPUTING AND ITS APPLICATIONS

Time: 2 hours
Maximum Marks : 50
(Weightage : 50\%)
Note:
(i) Question no. 7 is compulsory.
(ii) Attempt any four questions from questions no. 1 to 6.
(iii) Use of calculator is not allowed.

1. (a) Let R and S be two fuzzy relations as given below :
$\mathrm{R}=$ " X considerably larger than Y " $=$

$$
\left[\begin{array}{lll}
0.3 & 0.8 & 0.4 \\
0.6 & 0.9 & 0.1 \\
0.2 & 0.5 & 0.6
\end{array}\right]
$$

$S=" X$ is very close to $Y "=$

$$
\left[\begin{array}{ccc}
0.2 & 0.8 & 0.4 \\
0.7 & 0.9 & 0.1 \\
0.8 & 0.3 & 0.5
\end{array}\right]
$$

Define the following fuzzy relations:
(i) X is considerably larger or very close to Y .
(ii) X is considerably larger and very close to Y.
(b) Let X be a linguistic variable that measures a company's intellectual assets, which takes values from the Universe of discourse $U=\{1,2,3,4,5,6,7,8,9,10\}$. Suppose the term set of X includes Excellent, Good, Fair and Bad. Express these fuzzy sets through enumeration. Construct the α-cut at $\alpha=0.4$ for these fuzzy sets.
(c) Design a neural network for XOR problem.
2. (a) Consider a single input neuron, whose input is 2.0 , weight is 2.3 and bias is -3 . Find
(i) Net input to the transfer function,
(ii) Neuron output for transfer functions: Hard Limit, Linear, and Sigmoid (use $\mathbf{a}=1$).
(b) Show that backpropagation reduces to the LMS algorithm for a single layer linear network (ADALINE).
3. (a) Consider a Hopfield network, whose weight matrix is given by

$$
W=\frac{1}{4}\left[\begin{array}{rrrr}
0 & -2 & 2 & 2 \\
-2 & 0 & -2 & 2 \\
2 & -2 & 0 & -2 \\
2 & 2 & -2 & 0
\end{array}\right]
$$

Consider the two test input vectors $p t_{1}=\left(\begin{array}{lll}1 & -1 & 1\end{array} 1\right)$ and $p t_{2}=(-111-1)$. Check whether the output state vectors satisfy the alignment condition.
(b) Consider two normally distributed probability distributions given by
$P\left(x \mid \omega_{i}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{x-\mu_{i}}{\sigma}\right)^{2}\right], i=1,2$
with equal deviations $\sigma=1$ and priori probabilities $P\left(\omega_{1}\right)=P\left(\omega_{2}\right)$. Determine a classifier with a minimum classification error.
4. Calculate the modified weights found after training the competitive layer with Kohonen's rule, with learning rate (α) 0.5 on the input-series in order $\mathrm{I}_{1}, \mathrm{I}_{2}$ and I_{3}.
where, $\mathbf{I}_{1} \neq\left[\begin{array}{ll}-1 & 0\end{array}\right]^{T} ; \mathbf{I}_{2}=\left[\begin{array}{ll}0 & 1\end{array}\right]^{\mathrm{T}}$ and $I_{3}=\left[\begin{array}{ll}\sqrt{2} & \frac{1}{\sqrt{2}}\end{array}\right]^{T}$ and the initial values of three weight vectors are : $\left[\begin{array}{ll}0 & -1\end{array}\right]^{\mathrm{T}} ;\left[\begin{array}{ll}\frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}}\end{array}\right]^{\mathrm{T}}$; $\left[\begin{array}{ll}\frac{-1}{\sqrt{5}} & \frac{2}{\sqrt{5}}\end{array}\right]^{\mathrm{T}}$.
5. (a) Minimize the fitness function $f(x)=x^{2}$, subject to $0 \leq x \leq 16$, using genetic algorithm approach.
(b) Consider the following travelling salesman problem involving 9 cities :

Parent 1:	A	B	C	D	E	F	G	H	I
Parent 2:	C	D	E	A	B	I	H	G	F

Determine the children solution using
(i) Order crossover \#1, where two crossover sites are at positions $3^{\text {rd }}$ and $7^{\text {th }}$.
(ii) Order crossover \#2, for selected position $2,4,7,8$ as key positions.
6. (a) State Schema theorem and perform the following :
(i) Write the schema for the gene sequence $\left\{\begin{array}{lllllll}0 & 1 & 1 & 1 & 0 & 0 & 0\end{array}\right\}$ and $\left.\begin{array}{lllllll}1 & 1 & 1 & 0 & 0 & 1 & 1\end{array}\right\}$.
(ii) Write at least 4 chromosome sets, which are directly identified by schema $S=(0 \quad 1 * 1 *)$.
(b) Derive the updation rule for weights in backpropagation algorithm, when the activation function is $\tanh \mathbf{x}$.
7. Which of the following statements are True, and which are False? Give reasons.
(a) In a multilayer neural network, if the number of nodes at input, hidden and output layers are 6, 4 and 2 respectively, then the number of edges involved in the network is 32 .
(b) If A and B are two fuzzy sets with $\mu_{A}(x)=0.4$ and $\mu_{B}(x)=0.8$, then $\mu_{A \cap B}(x)=0.4$.
(c) The order of the schema **01** is 2 .
(d) In genetic algorithm, minimization problems can be transformed into maximization problems.
(e) In a single-layer neural network, the output corresponding to the input vector $\left[\begin{array}{ll}1 & 1\end{array}\right]^{\mathrm{t}}$ with weight vector [11 1 1] and bias -1.5 is 0 .

You may like to use the following table wherever required:

x	$\exp (x)$
1.6	4.95
-1.6	0.20
1.5	4.48
-1.5	0.22
2	7.39

