No. of Printed Pages: 6

MMTE-007

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

Term-End Examination

70484

December, 2016

MMTE-007 : SOFT COMPUTING AND ITS APPLICATIONS

Time : 2 hours

Maximum Marks : 50 (Weightage : 50%)

Note:

- (i) Question no. 7 is compulsory.
- (ii) Attempt any four questions from questions no. 1 to 6.
- (iii) Use of calculator is **not** allowed.
- 1. (a) Let R and S be two fuzzy relations as given below :

R = "X considerably larger than Y" =

0.3	0∙8	0.4
0.6	0.9	0·1
0.2	0.5	0.6

MMTE-007

P.T.O.

S = "X is very close to Y" =

[0·2	0.8	0.4]
0.7	0·9	0.1
0.8	0.3	0.5

3

4

3

5

Define the following fuzzy relations :

- (i) X is considerably larger or very close to Y.
- (ii) X is considerably larger and very close to Y.
- (b) Let X be a linguistic variable that measures a company's intellectual assets, which takes values from the Universe of discourse U = $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Suppose the term set of X includes Excellent, Good, Fair and Bad. Express these fuzzy sets through enumeration. Construct the α -cut at $\alpha = 0.4$ for these fuzzy sets.
- (c) Design a neural network for XOR problem.
- 2. (a) Consider a single input neuron, whose input is 2.0, weight is 2.3 and bias is -3. Find
 - (i) Net input to the transfer function,
 - (ii) Neuron output for transfer functions : Hard Limit, Linear, and Sigmoid (use a = 1).

MMTE-007

- (b) Show that backpropagation reduces to the LMS algorithm for a single layer linear network (ADALINE).
- (a) Consider a Hopfield network, whose weight matrix is given by

$$\mathbf{W} = \frac{1}{4} \begin{bmatrix} \mathbf{0} & -2 & 2 & 2 \\ -2 & \mathbf{0} & -2 & 2 \\ 2 & -2 & \mathbf{0} & -2 \\ 2 & 2 & -2 & \mathbf{0} \end{bmatrix}.$$

Consider the two test input vectors $pt_1 = (1 - 1 \ 1 \ 1)$ and $pt_2 = (-1 \ 1 \ 1 - 1)$. Check whether the output state vectors satisfy the alignment condition.

(b)

3.

Consider two normally distributed probability distributions given by

$$P(\mathbf{x} \mid \omega_i) = \frac{1}{\sqrt{2\pi} \sigma} \exp \left[-\frac{1}{2} \left(\frac{\mathbf{x} - \mu_i}{\sigma}\right)^2\right], i = 1, 2$$

with equal deviations $\sigma = 1$ and priori probabilities $P(\omega_1) = P(\omega_2)$. Determine a classifier with a minimum classification error.

MMTE-007

P.T.O.

5

5

5

3

4. Calculate the modified weights found after training the competitive layer with Kohonen's rule, with learning rate (α) 0.5 on the input-series in order I₁, I₂ and I₃.

where, $\mathbf{I_1} = \begin{bmatrix} -1 & 0 \end{bmatrix}^{\mathrm{T}}$; $\mathbf{I_2} = \begin{bmatrix} 0 & 1 \end{bmatrix}^{\mathrm{T}}$ and $\mathbf{I_3} = \begin{bmatrix} \sqrt{2} & \frac{1}{\sqrt{2}} \end{bmatrix}^{\mathrm{T}}$ and the initial values of three weight vectors are : $\begin{bmatrix} 0 & -1 \end{bmatrix}^{\mathrm{T}}$; $\begin{bmatrix} \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}^{\mathrm{T}}$; $\begin{bmatrix} \frac{-1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix}^{\mathrm{T}}$.

- 5. (a) Minimize the fitness function $f(x) = x^2$, subject to $0 \le x \le 16$, using genetic algorithm approach.
 - (b) Consider the following travelling salesman problem involving 9 cities :

Parent 1 :	Α	В	С	D	E	F	G	Η	Ι
Parent 2 :	С	D	E	Α	В	Ι	н	G	F

Determine the children solution using

- Order crossover #1, where two crossover sites are at positions 3rd and 7th.
- (ii) Order crossover #2, for selected position 2, 4, 7, 8 as key positions.

MMTE-007

4

6 ·

4

10

- (a) State Schema theorem and perform the following:
 - (i) Write the schema for the gene sequence $\{0 \ 1 \ 1 \ 1 \ 0 \ 0\}$ and $\{1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1\}$.
 - (ii) Write at least 4 chromosome sets, which are directly identified by schema $S = (0 \ 1 \ * \ 1 \ *)$.
- (b) Derive the updation rule for weights in backpropagation algorithm, when the activation function is tanh x.
- 7. Which of the following statements are *True*, and which are *False*? Give reasons.
 - (a) In a multilayer neural network, if the number of nodes at input, hidden and output layers are 6, 4 and 2 respectively, then the number of edges involved in the network is 32.
 - (b) If A and B are two fuzzy sets with $\mu_A(x) = 0.4$ and $\mu_B(x) = 0.8$, then $\mu_A \cap B(x) = 0.4$.
 - (c) The order of the schema **01 ** is 2.
 - (d) In genetic algorithm, minimization problems can be transformed into maximization problems.

MMTE-007

6.

5

P,T.O.

5

10

5

(e) In a single-layer neural network, the output corresponding to the input vector $[1 \ 1]^t$ with weight vector $[1 \ 1]$ and bias -1.5 is 0.

You may like to use the following table wherever required :

×	exp(x)
1.6	4.95
1.6	0.20
- 1.0	0.20
1.5	4.48
- 1.2	0.22
2	7.39

MMTE-007