No. of Printed Pages : 4

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

10934

December, 2016

MMTE-002 : DESIGN AND ANALYSIS OF ALGORITHMS

Time : 2 hours

Maximum Marks : 50

MMTE-002

Note: Question no. 6 is compulsory. Answer any four questions from questions no. 1 to 5.

1. (a) Sort the following numbers using the Quick Sort algorithm :

35, 23, 38, 22, 11, 47

(b) Consider the following binary search tree :

Explain, with all the steps, the process of deleting the nodes with values 15, 18 and 8.

MMTE-002

5 P.T.O.

5

2. (a) Illustrate the steps of the algorithm BUILD-MAX-HEAP for the following data :

16, 14, 10, 18, 7

Also compute the running time of the BUILD-MAX-HEAP algorithm.

5

5

5

5

- (b) Explain, with steps, the algorithm for finding the longest common subsequence of the sequences $X = \langle B, C, D, C, E, B, C \rangle$ and $Y = \langle C, E, D, B, C, B \rangle$ using Dynamic programming.
- **3.** (a) Illustrate, with all the steps, the operation of COUNTING-SORT on the array

$$A = \langle 7, 1, 3, 1, 2, 4, 5, 7, 2, 4, 3 \rangle.$$
 5

(b) Find the minimum spanning tree for the following graph using Prim's algorithm, explaining all the steps :

(a) Illustrate the steps of the Rabin-Karp matcher algorithm on the text

T = 3141592653589783

for the pattern P = 26. Assume you are working with q = 11. Indicate all the spurious hits.

MMTE-002

4.

 (b) Consider the knapsack instance with n = 3, with the cost array

> $(p_1, p_2, p_3) = (60, 100, 120)$, weight array $(w_1, w_2, w_3) = (10, 20, 30)$.

> The knapsack can hold a weight of 50 units. Solve the 0-1 knapsack problem and the fractional knapsack problem for the data above with the most efficient algorithm.

You should also explain why your choice of algorithm is most efficient.

- 5. (a) Compute the Discrete Fourier Transform (DFT) of the vector (1, 2, 0, 3).
 - (b) Run the Bellman-Ford algorithm on the directed graph given below, using the vertex s as the source. Explain all your steps.

3

MMTE-002

P.T.O.

5

4

6

- 6. Which of the following statements are *True*, and which are *False*? Justify your answers. $5 \times 2=10$
 - (a) Merge Sort algorithm is a stable sorting algorithm.
 - (b) Every binary heap is a B-tree.
 - (c) In the dynamic programming approach, the value of an optimal solution of an optimisation problem is determined in a bottom-up fashion.
 - (d) In any directed graph with negative weights, Dijkstra's algorithm can be used to find the shortest path.
 - (e) For any integer $k \ge 1$, if $a > b \ge 1$, $a, b \in N$, and $b < F_{k+1}$, the call EUCLID (a, b) makes fewer than k recursive calls, where F_{k+1} is the (k+1)th Fibonacci number.

MMTE-002