No. of Printed Pages: 8

PHE-11

BACHELOR OF SCIENCE (B.Sc.)

Term-End Examination

December, 2016

00974

PHYSICS

PHE-11: MODERN PHYSICS

Time: 2 hours

Maximum Marks: 50

Note: Attempt **all** questions. The marks for each question are indicated against it. Symbols have their usual meanings.

1. Answer any five parts:

5×3=15

- (a) The proper length of a rod is L. Its length is measured to be L/3 in a reference frame that is moving with respect to the rod. What is the speed of the moving reference frame?
- (b) The momentum of a particle is $2\cdot 0\times 10^{-21}~{\rm kg~ms^{-1}}$, at a speed of $0\cdot 8~{\rm c}$. Calculate its rest mass.
- (c) Write down the properties of a wave function and boundary conditions on it, for it to be physically acceptable.

- (d) A ball of mass 5.0 kg is moving with a velocity of 10 ms^{-1} . Calculate its de Broglie wavelength. Will it exhibit observable wave behaviour? Explain. (h = $6.626 \times 10^{-34} \text{ Js}$)
- (e) Write down the electronic configuration for atoms with (i) Z = 23 and (ii) Z = 34.
- (f) Define the activity of a radioactive sample. A radioactive sample emits, on an average, one β particle every 5 minutes. Determine the activity of the sample.
- (g) State the selection rules for X-ray spectra.
- (h) Explain whether or not the following reactions are allowed:
 - (i) $p^+ + n^0 \rightarrow p^+ + p^+$
 - (ii) $p^+ \to \pi^+ + \pi^0$

2. Answer any two parts:

2×5=10

(a) Explain why we do not observe the effects of time dilation in everyday phenomena. A free neutron at rest has a mean life time of 900 s.
 If the mean life time of the neutron is observed to be 1800 s, what is its speed?

- (b) Write down the relativistic force law. A charged particle moves perpendicular to a uniform magnetic field at relativistic speed.
 Determine the radius of its orbit.
- (c) A particle of mass M initially at rest decays into two particles with rest masses m_1 and m_2 , respectively. Show that the total energy

of
$$m_1$$
 is $\frac{C^2 [M^2 + m_1^2 - m_2^2]}{2M}$.

3. Answer any two parts:

 $2 \times 5 = 10$

- (a) Use the uncertainty principle to explain why zero point energy is observed for any particle in a bound state.
- (b) A particle is represented at t = 0 by the wave function

$$\Psi(x,0) = \begin{cases} N(L^2 - x^2), & \text{for } -L \leq x \leq L \\ \\ 0, & \text{otherwise.} \end{cases}$$

Determine the normalization constant N.

- (c) Evaluate the commutator: $[L_x, p_y]$.
- 4. Answer any one part:

 $1 \times 10 = 10$

- (a) A particle is confined to a 1-D box located between x = -L/2 and x = L/2.
 - (i) Write down the Schrödinger equation for the particle.

- (ii) State the boundary conditions on the wave function.
- (iii) Solve the Schrödinger equation to obtain the general wave function.
- (iv) Obtain the energy eigenvalues. 2+2+4+2
- (b) (i) Calculate the average potential energy for the hydrogen atom in its ground state:

$$\Psi_0(\mathbf{r}) = \frac{2}{a_0^{3/2}} e^{-\mathbf{r}/a_0}; \ a_0 = \frac{\hbar^2}{\mu e^2}.$$

(ii) Determine all the spectral terms for a hydrogen-like atom with n = 3.

5. Answer any one part:

1×5=5

5

- (a) Describe the shell model of the nucleus.
- (b) Define multiplication factor. State the conditions for a nuclear reactor to be subcritical, critical and supercritical.

विज्ञान स्नातक (बी.एस सी.) सत्रांत परीक्षा दिसम्बर, 2016

भौतिक विज्ञान पी.एच.ई.-11: आधुनिक भौतिकी

समय : 2 घण्टे

अधिकतम अंक : 50

नोट: सभी प्रश्न कीजिए । प्रत्येक प्रश्न के अंक उसके सामने दिए गए हैं । प्रतीकों के अपने सामान्य अर्थ हैं ।

किन्हीं पाँच भागों के उत्तर दीजिए :

5×3=15

- (क) एक छड़ की उचित लंबाई L है । छड़ के सापेक्ष गतिमान निर्देश तंत्र में उसकी लंबाई L/3 मापी जाती है । गतिमान निर्देश तंत्र की चाल क्या है ?
- (ख) $0.8\,\mathrm{c}$ की चाल से गतिमान एक कण का संवेग $2.0\times10^{-21}\,\mathrm{kg\ ms^{-1}}$ है । कण का विराम द्रव्यमान परिकलित कीजिए ।
- (ग) एक तरंग फलन को भौतिक रूप से अनुमत होने के लिए उसके गुणधर्म और उस पर परिसीमा प्रतिबंध क्या होने चाहिए, लिखिए।

- (घ) द्रव्यमान $5\cdot0~{
 m kg}$ की एक गेंद $10~{
 m ms}^{-1}$ के वेग से गितमान है । उसकी दे ब्रॉग्ली तरंगदैर्घ्य परिकलित कीजिए । क्या गेंद प्रेक्षणीय तरंग व्यवहार दिखाएगी ? समझाइए । $(h=6\cdot626\times10^{-34}~{
 m Js})$
- (ङ) (i) Z = 23 और (ii) Z = 34 वाले परमाणुओं के लिए इलेक्ट्रॉनिक विन्यास लिखिए ।
- (च) एक रेडियोऐक्टिव नमूने की सक्रियता परिभाषित कीजिए । एक रेडियोऐक्टिव नमूना औसतन प्रति 5 मिनट एक β-कण उत्सर्जित करता है । नमूने की सक्रियता निर्धारित कीजिए ।
- (छ) X-किरण स्पेक्ट्रम के वरण नियम बताइए ।
- (ज) समझाइए कि निम्नलिखित अभिक्रियाएँ अनुमत हैं या नहीं:
 - (i) $p^+ + n^0 \rightarrow p^+ + p^+$
 - (ii) $p^+ \to \pi^+ + \pi^0$
- 2. किन्हीं *दो* भागों के उत्तर दीजिए:

 $2 \times 5 = 10$

(क) समझाइए कि काल वृद्धि का प्रभाव हमें रोज़ाना की परिघटनाओं में क्यों नहीं दिखाई देता । विरामावस्था में स्थित एक मुक्त न्यूट्रॉन का औसत जीवनकाल 900 s है । यदि हम एक मुक्त न्यूट्रॉन का औसत जीवनकाल 1800 s मापते हैं, तो वह किस चाल से चल रहा है ? 2+3

- (ख) आपेक्षिकीय बल नियम लिखिए । एक आवेशित कण आपेक्षिकीय चाल से एकसमान चुंबकीय क्षेत्र के लंबवत् गतिमान है । इस कण की कक्षा की त्रिज्या की गणना कीजिए ।
- (ग) द्रव्यमान M वाला एक कण जो आरंभ में विरामावस्था में है, दो कणों में क्षय होता है जिनके विराम द्रव्यमान क्रमश: m_1 और m_2 हैं । सिद्ध कीजिए कि m_1 की कुल ऊर्जा निम्नलिखित है :

$$\frac{C^2 \left[M^2 + m_1^2 - m_2^2\right]}{2M}$$

3. किन्हीं दो भागों के उत्तर दीजिए:

 $2 \times 5 = 10$

5

- (क) अनिश्चितता सिद्धांत का प्रयोग करते हुए समझाइए कि बद्ध अवस्था में स्थित किसी भी कण के लिए शून्य बिन्दु ऊर्जा क्यों प्रेक्षित की जाती है।
- (ख) t = 0 पर एक कण निम्नलिखित तरंग फलन द्वारा निरूपित होता है :

प्रसामान्यीकरण नियतांक N निर्धारित कीजिए ।

- (η) कम्यूटेटर $[L_x, p_y]$ का मूल्यांकन कीजिए ।
- 4. किसी *एक* भाग का उत्तर दीजिए :

1×10=10

- (क) एक कण x = -L/2 और x = L/2 के बीच स्थित एक एक-विमीय बक्स में परिरुद्ध है।
 - (i) कण के लिए श्रोडिंगर समीकरण लिखिए।

P.T.O.

- (ii) तरंग फलन के लिए परिसीमा प्रतिबंध लिखिए।
- (iii) श्रोडिंगर समीकरण का हल करके व्यापक तरंग फलन प्राप्त कीजिए।
- (iv) ऊर्जा आइगेनमान प्राप्त कीजिए।

2+2+4+2

(ख) (i) मूल अवस्था

$$\Psi_0(\mathbf{r}) = \frac{2}{a_0^{3/2}} e^{-\mathbf{r}/a_0}; \ a_0 = \frac{\hbar^2}{\mu e^2}.$$

में स्थित हाइड्रोजन परमाणु के लिए औसत स्थितिज ऊर्जा परिकलित कीजिए।

(ii) हाइड्रोजन-सम परमाणु के लिए n=3 के संगत सभी स्पेक्ट्रमी पद निर्धारित कीजिए । 5

5. किसी एक भाग का उत्तर दीजिए:

1×5=5

5

- (क) नाभिक के लिए कोश मॉडल का वर्णन कीजिए।
- (ख) गुणन कारक की परिभाषा दीजिए । वह प्रतिबंध क्या है जिसके अंतर्गत एक नाभिकीय रिऐक्टर उपक्रांतिक, क्रांतिक और अतिक्रांतिक हो सकता है, बताइए ।