B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering) / B.Tech. (Aerospace Engineering) / BTCLEVI / BTMEVI / BTELVI / BTECVI / BTCSVI Term-End Examination

ET-101(A) : MATHEMATICS - I

Time: 3 hours
Maximum Marks : 70
Note: All the questions are compulsory. Use of scientific calculator is permitted.

1. Answer any five of the following : $5 \times 4=20$
(a) Differentiate $\mathrm{x}^{\cos \mathrm{x}}$ w.r.t. $(\cos \mathrm{x})^{\mathrm{x}}$.
(b) If $y=\sin \left(\operatorname{m~sin}^{-1} x\right)$, prove that
$\left(1-x^{2}\right) y_{2}-x y_{1}+m^{2} y=0$.
Hence find $\mathrm{y}_{\mathrm{n}+2}$, using Leibnitz's theorem.
(c) If $u=\sin ^{-1}\left(\frac{x}{y}\right)+\tan ^{-1}\left(\frac{y}{x}\right)$, then find
the value of $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}$.
ET-101(A)
1
P.T.Q.
(d) Find the ratio of the height to the radius of a closed cylinder of given volume and least surface area.
(e) Determine the values of ' p ' and ' q ' for which the function ' f ' defined by
$f(x)=\left\{\begin{array}{l}p x^{2}-2 x-q, \quad \text { when } x \geq 0 \\ \frac{p x-4}{\sqrt{x^{4}+x^{2}+1}}+q \sqrt{1-3 x}, \quad \text { when } x<0\end{array}\right.$
is continuous at $\mathrm{x}=0$.
(f) Evaluate the following limits if they exist :
(i) $\lim _{x \rightarrow 0} \frac{\sin x-\tan x}{\ln (1+x)-x+\frac{1}{2} x^{2}}$
(ii) $\lim _{x \rightarrow 3} \frac{\sqrt{x+1}-\sqrt{x^{2}-5}}{\sin ^{-1}(x-3)}$
2. Answer any four of the following :
(a) Let f: $[0,1] \rightarrow \mathbf{R}$ be a function defined by $f(x)=2 x$. Let $P_{1}=\left\{0, \frac{1}{3}, \frac{2}{3}, 1\right\}$ and $P_{2}=\left\{0, \frac{1}{6}, \frac{1}{3}, \frac{2}{3}, 1\right\}$ be two partitions of the interval $[0,1]$. Show that $L\left(P_{2}, f\right) \leq U\left(P_{1}, f\right)$.
(b) Solve the differential equation

$$
x y-x^{2}=y^{2} \frac{d x}{d y} .
$$

(c) Find the area between the cycloid;
$x=a(t-\sin t), y=a(1-\cos t)$ and its base.
(d) Evaluate the following integrals :
(i) $\int_{1}^{2} \frac{d x}{(x+1) \sqrt{x^{2}-1}}$
(ii) $\int_{0}^{\pi / 4} \frac{1+\sin 2 x}{1+\cos 2 x} \cdot e^{2 x} d x$
(e) Evaluate the following integrals :
(i) $\int_{-2}^{2}\{|x|+|x-1|\} d x$
(ii) $\int_{0}^{\pi / 4} \frac{\sec ^{2} x d x}{\sqrt{3-2 \tan x-\tan ^{2} x}}$
P.T.O.
3. Answer any four of the following :
(a) Find the directional derivative of $\phi=2 x^{3}-3 y z$ at the point $(2,1,3)$ in the direction parallel to a line, whose direction ratios are 2, 1, 2.
(b) Prove that

$$
\nabla^{2}\left(\frac{\mathrm{x}}{\mathrm{r}^{2}}\right)=-\frac{2 \mathrm{x}}{\mathrm{r}^{4}}
$$

where $r^{2}=x^{2}+y^{2}+z^{2}$.
(c) Find curl grad $\mathbf{r}^{\mathbf{n}}$, where

$$
\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}
$$

(d) If $\overrightarrow{\mathrm{F}}=\left(3 \mathrm{x}^{2}+6 y\right) \hat{i}-14 y z \hat{j}+20 x z^{2} \hat{k}$, evaluate $\int_{C} \vec{F} \cdot d \overrightarrow{\mathbf{r}}$, where C is the curve, $x=t, y=t^{2}, z=t^{3}$ from $t=0$ to $t=1$.
(e) Verify Green's theorem in a plane for
$\oint_{C}\left[\left(x^{2}-2 x y\right) d x+\left(x^{2} y+3\right) d y\right]$,
where C is the boundary of the region defined by $y^{2}=8 x$ and $x=2$.
4. Answer any three of the following : $3 \times 6=18$
(a) Solve the following system of linear equations using matrices :

$$
\begin{aligned}
& x+2 y-3 z=-4 \\
& 3 x-y+z=4 \\
& -4 x+2 y+3 z=9
\end{aligned}
$$

(b) Prove that

$$
\left|\begin{array}{ccc}
1+a^{2}-b^{2} & 2 a b & -2 b \\
2 a b & 1-a^{2}+b^{2} & 2 a \\
2 b & -2 a & 1-a^{2}-b^{2}
\end{array}\right|=\left(1+a^{2}+b^{2}\right)^{3} .
$$

(c) If $\mathbf{T}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ be a linear transformation defined by $T(x, y)=(x, x+y, y)$, find its range, null space, rank and nullity.
(d) Find the eigenvalues and eigenvectors of the matrix

$$
A=\left[\begin{array}{rrr}
5 & -6 & -6 \\
-1 & 4 & 2 \\
3 & -6 & -4
\end{array}\right]
$$

