BACHELOR OF COMPUTER APPLICATIONS (BCA) (Pre-Revised)

\square 1475
Term-End Examination
December, 2016

CS-71 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time : 3 hours
Maximum Marks : 75
Note: Question number 1 is compulsory. Attempt any three questions from questions number 2 to 5 . Use of non-scientific calculator is allowed.

1. (a) If 0.667 is the approximate value of $\frac{2}{3}$, find the absolute, relative, and percentage errors.
(b) Using bisection method, find a real root of the equation $x^{3}-5 x+1=0$, correct to two decimal places.
(c) Find the root of the equation $\mathrm{xe}^{\mathrm{x}}=\boldsymbol{\operatorname { c o s }} \mathrm{x}$ using the Regula-Falsi method, correct to four decimal places.
(d) Apply Newton-Raphson method to find an approximate root, correct to three decimal places, of the equation $x-2 \sin x=0$.
(e) By the fixed point iteration process, find the root, correct to three decimal places, of the equation $x=\cos x$ near $\left(x=\frac{\pi}{4}\right)$.
(f) Solve the following set of simultaneous equations by Cramer's rule :

$$
\begin{aligned}
& x_{1}+2 x_{2}-3 x_{3}=-4 \\
& 2 x_{1}-3 x_{2}+x_{3}=-1 \\
& 3 x_{1}-5 x_{2}+4 x_{3}=5
\end{aligned}
$$

2. (a) Find the root of the equation $e^{x}=x+2$ using bisection method, correct to three decimal places.
(b) By using the Regula-Falsi method find the root, correct to three decimal places, of the following equation over the indicated interval :

$$
x e^{x}=3 \text { over }(1,1.5)
$$

(c) Find the cube root of 7, correct to three decimal places, by using any suitable numerical method.
$3 \times 5=15$
3. (a) Using Newton-Raphson method, find the real root of the equation $x \tan x=1 \cdot 28$, correct to three decimal places.
(b) Solve the following algebraic equations by using Gauss' elimination method :

$$
\begin{aligned}
& x+y+z=6 \\
& 3 x+3 y+4 z=20 \\
& 2 x+y+3 z=13
\end{aligned}
$$

(c) Solve the following simultaneous equations by using Gauss-Jordan method :

$$
\begin{aligned}
& 5 x-2 y+3 z=18 \\
& x+7 y-3 z=-22 \\
& 2 x-y+6 z=22
\end{aligned}
$$

$3 \times 5=15$
4. (a) Solve the following simultaneous equations :

$$
\begin{aligned}
& x+y+z=3 \\
& 2 x-y+3 z=16 \\
& 3 x+y-z=-3
\end{aligned}
$$

(b) Use Jacobi's iteration method to solve the following system of equations :

$$
\begin{aligned}
& 20 x+y-2 z=17 \\
& 3 x+20 y-z=-18 \\
& 2 x-3 y+20 z=25
\end{aligned}
$$

(c) Solve $\frac{d y}{d t}+y^{2}=0$, given boundary conditions $y=1$ at $t=0$. Find approximately the value of y for $t=1$ by Euler's method in five steps. $3 \times 5=15$
5. (a) Prove the following :
(i) $\Delta=E \nabla=\nabla E=\delta E^{1 / 2}$
(ii) $\delta=\mathrm{E}^{1 / 2}-\mathrm{E}^{-1 / 2}$
(b) Use Lagrange's interpolation formula to compute $f(27)$ from the given data :

$x:$	14	17	31	35
$f(x):$	$68 \cdot 7$	$64 \cdot 0$	$44 \cdot 0$	$39 \cdot 1$

(c) Use Runge-Kutta method to aproximate y, when $x=0.1$ and $x=0 \cdot 2$, given that $x=0$, when $y=1$ and $\frac{d y}{d x}=x+y$. $3 \times 5=15$

