BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised)

Term-End Examination
$\square 5116$
December, 2016

BCS-054 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time: 3 hours
Maximum Marks : 100

Note:
(i) Calculator, including scientific, is allowed during examination. However, each step of numerical calculation should be explicitly carried out by the examinee.
(ii) Question no. 1 is compulsory. Attempt any three from rest of the four questions.

1. (a) Find the sum of two floating point numbers $\mathrm{a}=0.5403 \times 10^{3}$ and $\mathrm{b}=0.7182 \times 10^{4}$. 3
(b) Find the product of the two numbers a and b given above.
(c) Define what is 'underflow'. Give an example of multiplication due to which underflow occurs.
(d) Write the following system of linear equations in matrix form :

$$
\begin{aligned}
& 8 x+11 y=19 \\
& 12 x+5 y=17
\end{aligned}
$$

(e) Solve the following system of linear equations using Gauss elimination method : 4

$$
\begin{aligned}
& 5 x-3 y=7 \\
& -2 x+9 y=5
\end{aligned}
$$

(f) Find an interval in which the following equation has a root :

$$
x^{2}+x-2=0
$$

(g) Write briefly the steps of bisection method to find out the roots of an equation.
(h) Write the expressions which are obtained by applying each of the following operators to $\mathrm{f}(\mathrm{x})$:
(i) δ
(ii) ∇
(i) Write E in terms of each of ∇ and δ separately.
(j) Construct the difference table for the following data :

x	1	5	9	13
$f(x)$	5	17	29	41

(k) State the following two formulae for interpolation (for equal intervals) :
(i) Newton Forward Difference Formula
(ii) Bessel's Formula
(1) Explain the concept of 'Initial Value Problem' with an example.2
2. (a) Solve the following system of linear equations, using partial pivoting :

$$
\begin{aligned}
& 4 x_{1}-5 x_{2}+6 x_{3}=-24 \\
& x_{1}+3 x_{2}-5 x_{3}=22 \\
& -2 x_{1}+8 x_{2}+x_{3}=11
\end{aligned}
$$

(b) What are the relative advantages of iterative methods over direct methods for solving a system of linear equations?
3. (a) For $f(x)=3 x^{3}+11 x-5$, find $\nabla^{3} f(x)$ in terms of h, where h is an equally spaced interval.
(b) Estimate the missing term in the following data using backward difference assuming that the data is a valid representation of polynomial of degree 3 :-12

x	1.20	1.40	1.60	1.80	2.00
$\mathrm{f}(\mathrm{x})$	3.3201	4.0552	4.9530	$?$	7.3891

4. Attempt any two of (a), (b) and (c) below :
(a) Find $f^{\prime}(x)$ at $x=0.25$ from the following table of values : 10

x	0.2	0.3	0.4	0.5	0.6
$f(x)$	2.1082	2.8706	3.4013	3.9121	4.3012

(b) Find the approximate value of $\int_{2}^{3} \frac{d x}{3+4 x}$, using Trapezoidal rule, with 5 equal parts of $[2,3]$.
(c) Using Euler's method to find the solution of $d y / d x=3 x+y$, given $y(0)=3$, find the solution on the interval $[0,0.8]$ with $h=0 \cdot 2$, where x is the independent variable and y is the dependent variable.
5. (a) Using the 8-decimal digit floating point representation (4 digits for mantissa, 2 digits for exponent, and one each for sign of exponent and mantissa), represent the following numbers in normalized floating point form :
(i) $\quad-98 \cdot 37$
(ii) 0.000893
(Use chopping, if required)
(b) Using the 8 -decimal digit format stated in Q5(a) above, briefly discuss how zero is represented as a floating point number.
(c) Let $\mathrm{a}=476.9 \times 10^{6}, \mathrm{~b}=657.2 \times 10^{4}$ and $\mathbf{c}=-5.342 \times 10^{4}$. Find out whether ' + ' is associative for a, b and c (i.e., you are required to find out whether

$$
(a+b)+c=a+(b+c) \text { or not }) .
$$

