No. of Printed Pages: 6

OIEE-002

DIPLOMA IN ELECTRICAL ENGINEERING (DELVI)

00255 Term-End Examination
December, 2014

OIEE-002: ELECTRICAL ENGINEERING MATERIAL

Time: 2 hours Maximum Marks: 70

Note: Question no. 1 of Section A is compulsory.

Attempt any four questions from Section B. All questions carry equal marks.

SECTION A

1. Choose the correct answer.

 $7 \times 2 = 14$

- (a) Bronze is an alloy of
 - (i) Copper and Tin
 - (ii) Copper and Zinc
 - (iii) Copper and Aluminium
 - (iv) Lead and Iron
- (b) For germanium, the forbidden energy gap is
 - (i) 0.15 eV
 - (ii) 0.25 eV
 - (iii) 0.72 eV
 - (iv) 1.1 eV

- (c) The conductivity of a conducting material on being subjected to critical magnetic field changes to
 - (i) normal state
 - (ii) unstable state
 - (iii) temperature-independent state
 - (iv) temperature-dependent state
- (d) Which insulating material is used to protect underground cables?
 - (i) Bitumen
 - (ii) Cotton
 - (iii) Quartz glass
 - (iv) Polystyrene
- (e) Capacitors to be used at high frequencies, require a material whose loss angle is
 - (i) low
 - (ii) high
 - (iii) uniform
 - (iv) one
- (f) An example of a liquid conducting material is
 - (i) Mercury
 - (ii) Iridium
 - (iii) Silicon Resin
 - (iv) Boiling Sodium

- (g) Material used for high speed reading and storing of information in a computer is
 - (i) Ferrites
 - (ii) Piezoelectrics
 - (iii) Pyroelectrics
 - (iv) Ferromagnetics above 768°C

SECTION B

Attempt any four questions.

2. (a) Name the different physical properties of materials. Explain how these physical properties are utilized in different fields of application.

7

(b) Explain briefly the following mechanical properties of metals:

7

- (i) Elasticity
- (ii) Plasticity
- (iii) Fatigue
- 3. (a) On the basis of electron theory, derive
 - (i) Ohm's law in the form $\sigma = \frac{ne^2\tau}{m}$ where the symbols have their usual meanings.
 - (ii) Show that the heat developed per m³ per sec in a conductor carrying a current as a result of an applied field E is given by $W = \sigma E^2$.

7

(b) What is superconductivity? Explain how Type I and Type II superconducting materials are different from each other.

7

4.	(a)	With reference to dielectric breakdown of solids explain	
		(i) Frohlich's theory	
		(ii) Von Hippel theory	7
	(b)	What do you understand by the terms 'dielectric loss' and 'loss angle'? Explain your answer with the help of phasor diagram.	7
5.	(a)	State the factors influencing the characteristics of insulating systems. Name some important gases used as insulators. Mention their applications.	. 7
	(b)	What insulating materials would you suggest for the following? Also give the reasons.	
		(i) Overhead power lines	
		(ii) Wires and cables for lighting and power circuits	7
6.	(a)	Define hysteresis in ferromagnetic materials. Draw a hysteresis loop for a ferromagnetic material. Indicate on it (i) residual flux density, (ii) saturation induction and (iii) coercive force.	7
	(b)		•
	(U)	Briefly explain the phenomenon of Magnetostriction and Magnetic resonance.	7

7. Write short notes on any **two** of the following:

 $2 \times 7 = 14$

- (a) Atomic bonding in solids
- (b) Breakdown mechanism in gaseous dielectrics
- (c) Modern trends in electrical insulators
- (d) Origin of permanent magnetic dipole