BIELE-014

B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI) 00514

Term-End Examination

December, 2014

BIELE-014 : MULTIRATE SYSTEMS

Time : 3 hours

Maximum Marks : 70

Note: Answer any seven questions. Use of calculator is permitted. Each question carries equal marks. Missing data, if any, may be suitable assumed.

1.	(a)	What is an up-sampler and a down-sampler in multirate signal processing ?							
	(b) Discuss Nyquist criterion used in sampli theorem.								
2.	(a)	Discuss aliasing effect caused by down-sampling.	5						
	(b)	Discuss interpolation technique used for up-sampling.							
3.	(a)	Obtain the two-fold expanded signal $y(n)$ of the input signal $x(n)$, given as (n, n > 0)							
		$\mathbf{x}(\mathbf{n}) = \begin{cases} 0, & \text{otherwise} \end{cases}$	Э						
	(b)	Explain the polyphase form of the Quadrature Mirror Filter (QMF) bank.	5						

BIELE-014

P.T.O.

4.	Implement a two-stage decimator for the following specifications :										
	Sampling rate of the input signal = 20,000 Hz										
	$\mathbf{M} = 100$										
	Passband = 0 to 40 Hz										
	Transition band = 40 to 50 Hz										
	Passband ripple = 0.01 dB										
	Stop band ripple = 0.002 dB										
5.	Discuss the following :										
	(a)	M-Channel QMF Band									
	(b)	Alias-free and PR condition									
6.	(a)	What are digital filter banks ? Give some									
		applications where these filters are used.									
	(b)	What are uniform DFT filter banks ? Explain in detail.							5		
7.	Derive the input-output relation for a uniform DFT synthesis filter bank with										
	(a)	Type-I decomposition									
	(b)	Type-II decomposition									
8.	<u>(a)</u>	What are multi-level filter banks ?									
	(b)	Explai non-eq	n Jual	filter filter	bank passb	ands.	equal	and	5		
BIE	LE-014	Ļ			2						

9. Design a Linear-phase FIR filter which satisfies the following specifications : 10

Sampling frequency = 8000 Hz

Passband $= 0 \le F \le 75 Hz$

Transition band $= 75 \le F \le 80 \text{ Hz}$

Passband ripple : $\delta_1 = 10^{-2}$

Stopband ripple : $\delta_2 = 10^{-4}$

BIELE-014