DIPLOMA IN CIVIL ENGINEERING (DCLE(G)) / DIPLOMA IN ELECTRICAL AND MECHANICAL ENGINEERING (DEME) / DCLEVI / DMEVI / DELVI / DECVI / DCSVI / ACCLEVI / ACMEVI / ACELVI / ACECVI / ACCSVI

Term-End Examination

December, 2014

BET-021 : MATHEMATICS - II

Time : 2 hours
Maximum Marks : 70
Note: Questions No. 1 is compulsory. Attempt any four questions out of the remaining questions. Use of scientific calculator is permitted.

1. Answer any seven parts of the following : $2 \times 7=14$
(a) If $y=\sin x \sin 2 x \sin 3 x$, find $\frac{d y}{d x}$.
(b) Prove that the function $f(x)=5 x+3$ is an increasing function.
(c) Express $\frac{(\cos \theta+i \sin \theta)^{8}}{(\sin \theta+i \cos \theta)^{4}}$ in the form $x+i y$.
(d) If $A=\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right], \quad B=\left[\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right]$, then show that $A^{2}=B^{2}$.
(e) Find the median of

$$
3,5,8,9,12,15,16,18,19,23
$$

(f) Find the modulus of the complex number

$$
\frac{1-2 \mathrm{i}}{1-(1-\mathrm{i})^{2}}
$$

(g) Evaluate

$$
\int \sin ^{3} x \cos x d x
$$

(h) Evaluate

$$
\int_{-1}^{1}\left(x+x^{3}+\sin x\right) d x
$$

(i) Find the value $\lim _{x \rightarrow 4} \frac{x^{2}-16}{x-4}$.
(j) For the function $\mathrm{f}: \mathrm{x} \rightarrow \mathrm{x}^{2}, \quad \forall \mathrm{x} \in \mathrm{R}$ and $g: x \rightarrow 8 x+1$ for all $x \in R$, find gof (x).
2. (a) Find $\frac{d y}{d x}$, if $y=\frac{\cos x}{x^{2}}$.
(b) Show the ellipse $\frac{x^{2}}{18}+\frac{y^{2}}{8}=1$ and the parabola $x^{2}-y^{2}=5$ cut orthogonally.
3. (a) Find two positive numbers such that their sum is 10 and their product is as large as possible.
(b) Evaluate

$$
\int \frac{6 x^{3}-11 x^{2}+5 x-4}{x^{4}-2 x^{3}+x^{2}-2 x} d x
$$

4. (a) Find the area of the region bounded by the parabola $y=x^{2}+2$ and the lines $y=x$, $\mathrm{x}=0$ and $\mathrm{x}=3$.
(b) Use De. Moivre's theorem to solve the equation $x^{3}+1=0$.
5. (a) Evaluate the determinant 7

$$
\left|\begin{array}{ccc}
a & a+b & a+b+c \\
2 a & 3 a+2 b & 4 a+3 b+2 c \\
3 a & 6 a+3 b & 10 a+6 b+3 c
\end{array}\right|
$$

(b) Find the matrix X, so that 7

$$
\mathrm{X}\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]=\left[\begin{array}{ccc}
-7 & -8 & -9 \\
2 & 4 & 6
\end{array}\right]
$$

6. (a) The ages of all male inhabitants of a village were received and the following frequency distribution was obtained :

Age (years)	No. of persons
$0-5$	12
$5-10$	18
$10-20$	16
$20-30$	19
$30-40$	14
$40-50$	11
$50-60$	4
$60-80$	3

Obtain the mean age per male inhabitant.
(b) The scores of a batsman in 10 different matches were $38,70,48,34,42,55,63,46$, 54,44 . Find the MD and SD of these scores.
7. (a) Draw the graph of the curve $y=\sin ^{2} x$. 7
(b) Find the equation of the tangent and normal to the parabola $y^{2}=4 a x$ at the point ($\mathrm{x}_{1}, \mathrm{y}_{1}$).

